Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles

We have explored the effect of gold nanoparticle (Au NP)-induced surface plasmons on the performance of organic photovoltaic devices (OPVs). The power conversion efficiency of these OPVs was improved after blending the Au NPs into the anodic buffer layer. The addition of Au NPs increased the rate of exciton generation and the probability of exciton dissociation, thereby enhancing the short-circuit current density and the fill factor. We attribute the improvement in device performance to the local enhancement in the electromagnetic field originating from the excitation of the localized surface plasmon resonance.

[1]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[2]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[3]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[4]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[5]  Yi-Kai Lin,et al.  Modified buffer layers for polymer photovoltaic devices , 2007 .

[6]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[7]  Gang Li,et al.  Efficient light harvesting in multiple-device stacked structure for polymer solar cells , 2006 .

[8]  Gang Li,et al.  Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance , 2006 .

[9]  P. Blom,et al.  Origin of the Reduced Fill Factor and Photocurrent in MDMO‐PPV:PCNEPV All‐Polymer Solar Cells , 2007 .

[10]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[11]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[12]  Michael H. Huang,et al.  Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures , 2008 .

[13]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[14]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[15]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[16]  Dong Yun Lee,et al.  High efficiency polymer solar cells with wet deposited plasmonic gold nanodots , 2009 .

[17]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[18]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[19]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[20]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[21]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[22]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[23]  Valentin D. Mihailetchi,et al.  Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells , 2006 .