Sputtered a-silicon tunneling barriers for Nb-Nb Josephson junctions

We have developed an IC-compatible process for fabricating Josephson tunnel junctions, which uses dc magnetron-sputtered Nb films as both base and counterelectrodes, and rf-sputtered amorphous silicon as the tunneling barrier. Optical reflectivity measurements have been used to study the silicon barrier, and to allow precise determination of the barrier thickness. The Josephson current density varies exponentially -- over several orders of magnitude -- with the barrier thickness. The product of the critical Current and subgap resistance V m is constant over this wide range of current density. The specific capacitance of these Junctions is ∼ 2.5 μf/cm2at a current density of a few hundred A/cm2. This is lower than the value for lead-alloy Junctions, ∼ 4.3 μf/cm2[1], and is consistent with the measured thickness and dielectric constant of the a-Si barrier. The performance of logic gates fabricated with these devices will be presented elsewhere in this conference.

[1]  M. Nisenoff,et al.  Niobium nitride‐niobium Josephson tunnel junctions with sputtered amorphous silicon barriers , 1982 .

[2]  J. Brooks,et al.  Tunneling characteristics of amorphous Si barriers , 1982 .

[3]  L. Smith,et al.  Selective niobium anodization process for fabricating Josephson tunnel junctions , 1981 .

[4]  S. Basavaiah,et al.  High-reliability Pb-alloy Josephson junctions for integrated circuits , 1980, IEEE Transactions on Electron Devices.

[5]  W. Walter,et al.  Niobium oxide-barrier tunnel junction , 1980, IEEE Transactions on Electron Devices.

[6]  J. Magerlein,et al.  Resonances in symmetric Josephson interferometers , 1980 .

[7]  M. Beasley,et al.  Oxidized amorphous‐silicon superconducting tunnel junction barriers , 1980 .

[8]  R. F. Broom,et al.  Effect of Process Variables on Electrical Properties of Pb-Alloy Josephson Junctions , 1980, IBM J. Res. Dev..

[9]  C. J. Kircher,et al.  Fabrication Process for Josephson Integrated Circuits , 1980, IBM J. Res. Dev..

[10]  J. D. Leslie,et al.  New technique for electron-tunneling junction fabrication and its application to tantalum and niobium , 1978 .

[11]  R. E. Daniel,et al.  Schottky‐barrier characteristics of metal–amorphous‐silicon diodes , 1976 .

[12]  H. Schlötterer,et al.  Optical Investigation of Different Silicon Films , 1974 .

[13]  T. Fulton,et al.  Lifetime of the zero-voltage state in Josephson tunnel junctions , 1974 .

[14]  K. Grebe,et al.  Dynamic behavior of Josephson tunnel junctions in the subnanosecond range , 1973 .

[15]  T. Fulton Punchthrough and the Tunneling Cryotron , 1971 .

[16]  Fiske,et al.  JOSEPHSON AC AND STEP STRUCTURE IN THE SUPERCURRENT TUNNELING CHARACTERISTIC , 1965 .

[17]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[18]  J. Magerlein,et al.  Specific capacitance of Josephson tunnel junctions , 1981 .

[19]  J. Mooij,et al.  Very low noise all-niobium DC SQUIDs , 1981 .

[20]  T. Fukui,et al.  Organometallic VPE Growth of InAs1-xSbx on InAs , 1980 .

[21]  J. Halbritter,et al.  XPS and AES studies on oxide growth and oxide coatings on niobium , 1980 .

[22]  H. Kroger,et al.  Niobium Josephson junctions with doped amorphous silicon barriers , 1979 .

[23]  H. H. Zappe,et al.  Analysis of resonance phenomena in Josephson interferometer devices , 1978 .

[24]  J. Rowell Tunneling Anomalies-Experiment , 1969 .