Efferent connections of the internal globus pallidus in the squirrel monkey: II. topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus

The first objective of the present study was to verify whether projections from regions of the internal pallidum (GPi) that receive inputs from different functional areas of the striatum remain segregated at the level of the pedunculopontine nucleus (PPN) in squirrel monkeys. Second, we analyzed the ultrastructural features and synaptic organization of pallidal terminals in contact with PPN neurons. This was achieved by performing iontophoretic injections of biotinylated dextran amine (BDA) in different regions of the GPi.

[1]  J. Olszewski,et al.  Cytoarchitecture of the Human Brain Stem , 1955 .

[2]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[3]  K. Akert,et al.  A stereotaxic atlas of the brain of the squirrel monkey : (Saimiri sciureus) , 1963 .

[4]  W. Nauta,et al.  Projections of the lentiform nucleus in the monkey. , 1966, Brain research.

[5]  M. Carpenter,et al.  Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. , 1967, The American journal of anatomy.

[6]  T. Powell,et al.  The cortico-striate projection in the monkey. , 1970, Brain : a journal of neurology.

[7]  M. Carpenter,et al.  Projections of the globus pallidus and adjacent structures: An autoradiographic study in the monkey , 1976, The Journal of comparative neurology.

[8]  K. Larsen,et al.  Output organization of the feline entopeduncular and subthalamic nuclei , 1978, Brain Research.

[9]  M. Filion,et al.  A comparison of projections of entopeduncular neurons to the thalamus, the Midbrain and the habenula in the cat , 1978, The Journal of comparative neurology.

[10]  E. Yeterian,et al.  Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections , 1978, Brain Research.

[11]  R. L. McBride,et al.  The organization of feline entopeduncular nucleus projections: Anatomical studies , 1979, The Journal of comparative neurology.

[12]  H. Nauta Projections of the pallidal complex: An autoradiographic study in the cat , 1979, Neuroscience.

[13]  W. Nauta,et al.  Efferent connections of the substantia nigra and ventral tegmental area in the rat , 1979, Brain Research.

[14]  M. Filion,et al.  Pallidal neurons branching to the thalamus and to the midbrain in the monkey , 1980, Brain Research.

[15]  D. Kooy,et al.  The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat , 1981, Brain Research.

[16]  A. Jackson,et al.  Basal ganglia and other afferent projections to the peribrachial region in the rat: A study using retrograde and anterograde transport of horseradish peroxidase , 1981, Neuroscience.

[17]  Clifford B. Saper,et al.  Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry , 1982, Brain Research.

[18]  André Parent,et al.  Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by flourescence retrograde labeling method , 1982, Brain Research.

[19]  A. Levey,et al.  Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase , 1983, The Journal of comparative neurology.

[20]  A M Graybiel,et al.  The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta , 1983, The Journal of comparative neurology.

[21]  C. Hammond,et al.  Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat , 1983, Neuroscience.

[22]  M. Mesulam,et al.  Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6) , 1983, Neuroscience.

[23]  A. Jackson,et al.  Nucleus tegmenti pedunculopontinus: Efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase , 1983, Neuroscience.

[24]  H. Fibiger,et al.  NADPH-diaphorase: A selective histochemical marker for the cholinergic neurons of the pontine reticular formation , 1983, Neuroscience Letters.

[25]  E. Scarnati,et al.  Pedunculopontine-evoked excitation of substantia nigra neurons in the rat , 1984, Brain Research.

[26]  M. Mesulam,et al.  Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry , 1984, Neuroscience.

[27]  A. Parent,et al.  Distribution of Acetylcholinesterase-Containing Neurons in the Basal Forebrain and Upper Brainstem of the Squirrel Monkey (Saimiri sciureus) , 1984, Brain Research Bulletin.

[28]  H. Fibiger,et al.  Distribution of central cholinergic neurons in the baboon (papio papio). I. General morphology , 1985, The Journal of comparative neurology.

[29]  E. Garcia-Rill The basal ganglia and the locomotor regions , 1986, Brain Research Reviews.

[30]  Larry L. Butcher,et al.  Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain , 1986, Brain Research Bulletin.

[31]  H. Oka,et al.  Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: An intracellular HRP study , 1986, The Journal of comparative neurology.

[32]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[33]  A. Parent,et al.  Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus) , 1986, Neuroscience.

[34]  C. Saper,et al.  Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum , 1987, The Journal of comparative neurology.

[35]  A. Parent,et al.  Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods , 1987, Brain Research.

[36]  L. Descarries,et al.  Distribution of GABA‐immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[37]  E. Scarnati,et al.  The organization of nucleus tegmenti pedunculopontinus neurons projecting to basal ganglia and thalamus: a retrograde fluorescent double labeling study in the rat , 1987, Neuroscience Letters.

[38]  H. Tokuno,et al.  A morphological evidence for monosynaptic projections from the nucleus tegmenti pedunculopontinus pars compacta (TPC) to nigrostriatal projection neurons , 1988, Neuroscience Letters.

[39]  C. Saper,et al.  Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat , 1988, The Journal of comparative neurology.

[40]  A. Levey,et al.  Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei , 1988, The Journal of comparative neurology.

[41]  H. Tokuno,et al.  Synaptic organization of the pedunculopontine tegmental nucleus of the cat , 1989, Brain Research.

[42]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[43]  M M Mesulam,et al.  Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons , 1989, The Journal of comparative neurology.

[44]  I. Grofová,et al.  Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat , 1989, The Journal of comparative neurology.

[45]  H. Tokuno,et al.  Monosynaptic nigral inputs to the pedunculopontine tegmental nucleus neurons which send their axons to the medial reticular formation in the medulla oblongata. An electron microscopic study in the cat , 1989, Neuroscience Letters.

[46]  L. Butcher,et al.  Cholinergic systems in the rat brain: IV. descending projections of the pontomesencephalic tegmentum , 1989, Brain Research Bulletin.

[47]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[48]  Y. Smith,et al.  Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: A double anterograde labelling study , 1991, Neuroscience.

[49]  E. Garcia-Rill The pedunculopontine nucleus , 1991, Progress in Neurobiology.

[50]  A. Parent,et al.  Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study , 1991, Brain Research.

[51]  I. Grofová,et al.  Nigropedunculopontine projection in the rat: An Anterograde tracing study with phaseolus vulgaris‐leucoagglutinin (PHA‐L) , 1991, The Journal of comparative neurology.

[52]  D. Pandya,et al.  Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys , 1991, The Journal of comparative neurology.

[53]  A. Graybiel,et al.  Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. , 1991, Journal of neurophysiology.

[54]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[55]  H. Groenewegen,et al.  Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  B. Wainer,et al.  Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies , 1992, The Journal of comparative neurology.

[57]  Y. Kubota,et al.  Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: Interaction with catecholamine fibers , 1992, Brain Research Bulletin.

[58]  H. Fibiger,et al.  Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐ and antero‐grade transport and immunohistochemical study , 1992, The Journal of comparative neurology.

[59]  S. Haber,et al.  Organization of the output of the ventral striatopallidal system in the rat: Ventral pallidal efferents , 1993, Neuroscience.

[60]  D. Pandya,et al.  Striatal connections of the parietal association cortices in rhesus monkeys , 1993, The Journal of comparative neurology.

[61]  M. Sambrook,et al.  Thalamotomy for the alleviation of levodopa-induced dyskinesia: Experimental studies in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated parkinsonian monkey , 1993, Neuroscience.

[62]  A. Graybiel,et al.  Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  S. Haber,et al.  Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input , 1994, The Journal of comparative neurology.

[64]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons , 1994, The Journal of comparative neurology.

[65]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract‐tracing methods , 1994, The Journal of comparative neurology.

[66]  D. Joel,et al.  The organization of the basal ganglia-thalamocortical circuits: Open interconnected rather than closed segregated , 1994, Neuroscience.

[67]  K. Semba,et al.  Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum , 1994, Brain Research.

[68]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra , 1994, The Journal of comparative neurology.

[69]  K. Semba,et al.  An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat , 1995, Neuroscience.

[70]  J. Bolam,et al.  Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  P. Winn,et al.  The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation , 1995, Progress in Neurobiology.

[72]  B. K. Hartman,et al.  Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  E. Lynd-Balta,et al.  The orbital and medial prefrontal circuit through the primate basal ganglia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  A. Charara,et al.  Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris‐leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry , 1996, The Journal of comparative neurology.

[75]  Y. Smith,et al.  Efferent connections of the internal globus pallidus in the squirrel monkey: I. topography and synaptic organization of the pallidothalamic projection , 1997, The Journal of comparative neurology.