Semiconductor quantum-limited amplifier

We have built a parametric amplifier with a Josephson field effect transistor (JoFET) as the active element. The device’s resonant frequency is field-effect tunable over a range of 2 GHz. The JoFET amplifier has 20 dB of gain, 4 MHz of instantaneous bandwidth, and a 1 dB compression point of several photons when operated at a fixed resonance frequency. The amplifier’s noise performance approaches the limits imposed by quantum mechanics. Magnetic-field compatibility and opportunities for sensing are discussed.

[1]  J. Koski,et al.  InAs-Al hybrid devices passing the topological gap protocol , 2022, Physical Review B.

[2]  Kenji Watanabe,et al.  A gate-tunable graphene Josephson parametric amplifier , 2022, Nature Nanotechnology.

[3]  Kenji Watanabe,et al.  Quantum-noise-limited microwave amplification using a graphene Josephson junction , 2022, Nature Nanotechnology.

[4]  S. Tarucha,et al.  Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.

[5]  A. Ghazaryan,et al.  Detecting Induced p±ip Pairing at the Al-InAs Interface with a Quantum Microwave Circuit. , 2021, Physical review letters.

[6]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2021, Nature.

[7]  C. Marcus,et al.  Magnetic-Field-Compatible Superconducting Transmon Qubit , 2021, Physical Review Applied.

[8]  M. Manfra,et al.  A cryogenic CMOS chip for generating control signals for multiple qubits , 2021 .

[9]  Fabio Sebastiano,et al.  CMOS-based cryogenic control of silicon quantum circuits , 2020, Nature.

[10]  J. Teufel,et al.  Control and readout of a superconducting qubit using a photonic link , 2020, Nature.

[11]  J. Shabani,et al.  Missing Shapiro steps in topologically trivial Josephson junction on InAs quantum well , 2020, Nature communications.

[12]  I. Žutić,et al.  Phase Signature of Topological Transition in Josephson Junctions. , 2019, Physical review letters.

[13]  S. Svensson,et al.  Aluminum metallization of III–V semiconductors for the study of proximity superconductivity , 2020 .

[14]  D. Basko,et al.  Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier , 2019, Physical Review X.

[15]  M. Manfra,et al.  Evidence of topological superconductivity in planar Josephson junctions , 2018, Nature.

[16]  J. Shabani,et al.  Superconducting proximity effect in epitaxial Al-InAs heterostructures , 2018, Applied Physics Letters.

[17]  K. Lehnert,et al.  Design of an On-Chip Superconducting Microwave Circulator with Octave Bandwidth , 2018, Physical Review Applied.

[18]  E. Bakkers,et al.  Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments , 2018, Physical Review Applied.

[19]  Alessandro Rossi,et al.  A CMOS dynamic random access architecture for radio-frequency readout of quantum devices , 2018, Nature Electronics.

[20]  S. Svensson,et al.  Reactivity studies and structural properties of Al on compound semiconductor surfaces , 2018, Journal of Vacuum Science & Technology B.

[21]  M. Devoret,et al.  Optimizing the Nonlinearity and Dissipation of a SNAIL Parametric Amplifier for Dynamic Range , 2018, Physical Review Applied.

[22]  M. J. Manfra,et al.  Superconducting gatemon qubit based on a proximitized two-dimensional electron gas , 2017, Nature Nanotechnology.

[23]  C. Marcus,et al.  Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array , 2017, Nature Physics.

[24]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[25]  Alexandre Blais,et al.  Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits , 2017, 1707.04565.

[26]  M. Manfra,et al.  Scaling of Majorana Zero-Bias Conductance Peaks. , 2017, Physical review letters.

[27]  G. Hilton,et al.  Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout , 2017, 1703.01693.

[28]  M. Irfan,et al.  Demonstration of an ac Josephson junction laser , 2017, Science.

[29]  C. J. Palmstrøm,et al.  Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure , 2016, Nature Communications.

[30]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[31]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[32]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[33]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[34]  C. Marcus,et al.  Semiconductor-Nanowire-Based Superconducting Qubit. , 2015, Physical review letters.

[35]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[36]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[37]  Jay M. Gambetta,et al.  Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon , 2012, 1204.2237.

[38]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[39]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[40]  S. Filipp,et al.  Coplanar waveguide resonators for circuit quantum electrodynamics , 2008, 0807.4094.

[41]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[42]  R. J. Schoelkopf,et al.  Analog information processing at the quantum limit with a Josephson ring modulator , 2008, 0805.3452.

[43]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[44]  M. Roukes,et al.  A low-noise series-array Josephson junction parametric amplifier , 1996 .

[45]  Smith,et al.  Observation of zero-point noise squeezing via a Josephson-parametric amplifier. , 1990, Physical review letters.

[46]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[47]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[48]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .