Policy Optimization Using Semiparametric Models for Dynamic Pricing

In this paper, we study the contextual dynamic pricing problem where the market value of a product is linear in their observed features plus some market noise. Products are sold one at a time, and only a binary response indicating the success or failure of a sale is observed. Our model setting is similar to \cite{JN19} except that we expand the demand curve to a semiparametric model and need to learn dynamically both parametric and nonparametric components. We propose a dynamic statistical learning and decision-making policy that combines semiparametric estimation from a generalized linear model with an unknown link and online decision making to minimize regret (maximize revenue). Under mild conditions, we show that for a market noise c.d.f. $F(\cdot)$ with $m$-th order derivative, our policy achieves a regret upper bound of $\tilde{\cO}_{d}(T^{\frac{2m+1}{4m-1}})$ for $m\geq 2$, where $T$ is time horizon and $\tilde{\cO}_{d}$ is the order that hides logarithmic terms and the dimensionality of feature $d$. The upper bound is further reduced to $\tilde{\cO}_{d}(\sqrt{T})$ if $F$ is super smooth whose Fourier transform decays exponentially. In terms of dependence on the horizon $T$, these upper bounds are close to $\Omega(\sqrt{T})$, the lower bound where the market noise distribution belongs to a parametric class. We further generalize these results to the case when the product features are dynamically dependent, satisfying some strong mixing conditions.

[1]  Yu-Xiang Wang,et al.  Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise , 2022, AISTATS.

[2]  Yining Wang,et al.  Privacy-Preserving Dynamic Personalized Pricing with Demand Learning , 2020, Manag. Sci..

[3]  Xi Chen,et al.  Context‐based dynamic pricing with online clustering , 2019, Production and Operations Management.

[4]  D. Simchi-Levi,et al.  A Statistical Learning Approach to Personalization in Revenue Management , 2015, Manag. Sci..

[5]  Will Wei Sun,et al.  Distribution-free Contextual Dynamic Pricing , 2021, ArXiv.

[6]  N. Bora Keskin,et al.  Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity , 2021, Manag. Sci..

[7]  Xi Chen,et al.  Uncertainty Quantification for Demand Prediction in Contextual Dynamic Pricing , 2020, Production and Operations Management.

[8]  Renato Paes Leme,et al.  Optimal Contextual Pricing and Extensions , 2020, SODA.

[9]  G. Gallego,et al.  Nonparametric Pricing Analytics with Customer Covariates , 2018, Oper. Res..

[10]  O. Papaspiliopoulos High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .

[11]  Alexey Drutsa,et al.  Optimal Non-parametric Learning in Repeated Contextual Auctions with Strategic Buyer , 2020, ICML.

[12]  Anton Zhiyanov,et al.  Bisection-Based Pricing for Repeated Contextual Auctions against Strategic Buyer , 2020, ICML.

[13]  Chi-Hua Wang,et al.  Online Regularization for High-Dimensional Dynamic Pricing Algorithms , 2020, ArXiv.

[14]  Georgia Perakis,et al.  Data Analytics in Operations Management: A Review , 2019, Manufacturing & Service Operations Management.

[15]  Adel Javanmard,et al.  Multi-Product Dynamic Pricing in High-Dimensions with Heterogeneous Price Sensitivity , 2019, 2020 IEEE International Symposium on Information Theory (ISIT).

[16]  Wei Tang,et al.  Differentially Private Contextual Dynamic Pricing , 2020, AAMAS.

[17]  Incentive-aware Contextual Pricing with Non-parametric Market Noise , 2019, ArXiv.

[18]  Zeyu Zheng,et al.  Dynamic Pricing with External Information and Inventory Constraint , 2019, SSRN Electronic Journal.

[19]  Izak Duenyas,et al.  Nonparametric Self-Adjusting Control for Joint Learning and Optimization of Multiproduct Pricing with Finite Resource Capacity , 2019, Math. Oper. Res..

[20]  Virag Shah,et al.  Semi-parametric dynamic contextual pricing , 2019, NeurIPS.

[21]  David Simchi-Levi,et al.  Dynamic Learning and Pricing with Model Misspecification , 2018, Manag. Sci..

[22]  Vianney Perchet,et al.  Dynamic Pricing with Finitely Many Unknown Valuations , 2018, ALT.

[23]  Adel Javanmard,et al.  Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions , 2018, NeurIPS.

[24]  Adel Javanmard,et al.  Dynamic Pricing in High-Dimensions , 2016, J. Mach. Learn. Res..

[25]  Renato Paes Leme,et al.  Contextual Search via Intrinsic Volumes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[26]  Mike Mingcheng Wei,et al.  Recent Research Developments of Strategic Consumer Behavior in Operations Management , 2017, Comput. Oper. Res..

[27]  Renato Paes Leme,et al.  Contextual Pricing for Lipschitz Buyers , 2018, NeurIPS.

[28]  Adel Javanmard Perishability of Data: Dynamic Pricing under Varying-Coefficient Models , 2017, J. Mach. Learn. Res..

[29]  Mohsen Bayati,et al.  Dynamic Pricing with Demand Covariates , 2016, 1604.07463.

[30]  Renato Paes Leme,et al.  Feature-based Dynamic Pricing , 2016, EC.

[31]  Robert Phillips,et al.  The Effectiveness of Field Price Discretion: Empirical Evidence from Auto Lending , 2015, Manag. Sci..

[32]  Bernstein type inequality for a class of dependent random matrices , 2015, 1504.05834.

[33]  P. Hall,et al.  INFINITE ORDER CROSS-VALIDATED LOCAL POLYNOMIAL REGRESSION , 2015 .

[34]  Moshe Babaioff,et al.  Dynamic Pricing with Limited Supply , 2011, ACM Trans. Economics and Comput..

[35]  Umar Syed,et al.  Repeated Contextual Auctions with Strategic Buyers , 2014, NIPS.

[36]  Assaf J. Zeevi,et al.  Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies , 2014, Oper. Res..

[37]  Zizhuo Wang,et al.  Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems , 2014, Oper. Res..

[38]  Bert Zwart,et al.  Simultaneously Learning and Optimizing Using Controlled Variance Pricing , 2014, Manag. Sci..

[39]  A. V. den Boer,et al.  Dynamic Pricing and Learning: Historical Origins, Current Research, and New Directions , 2013 .

[40]  Peter Hall,et al.  A simple bootstrap method for constructing nonparametric confidence bands for functions , 2013, 1309.4864.

[41]  Josef Broder,et al.  Dynamic Pricing Under a General Parametric Choice Model , 2012, Oper. Res..

[42]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[43]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[44]  E. Rio,et al.  Bernstein inequality and moderate deviations under strong mixing conditions , 2012, 1202.4777.

[45]  Omar Besbes,et al.  Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms , 2009, Oper. Res..

[46]  Arthur Berg,et al.  CDF and survival function estimation with infinite-order kernels , 2009, 0903.3014.

[47]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[48]  Xin Fu,et al.  Confidence bands in nonparametric regression , 2009 .

[49]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[50]  Peter W. Glynn,et al.  A Nonparametric Approach to Multiproduct Pricing , 2006, Oper. Res..

[51]  N. Wermuth,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[52]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[53]  D. Politis,et al.  Nonparametric regression with infinite order flat-top kernels , 2004 .

[54]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[55]  Frank Thomson Leighton,et al.  The value of knowing a demand curve: bounds on regret for online posted-price auctions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[56]  W. Härdle,et al.  Efficient estimation in conditional single-index regression , 2003 .

[57]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[58]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[59]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[60]  Yingcun Xia,et al.  On Single-Index Coefficient Regression Models , 1999 .

[61]  D. Bosq Inequalities for mixing processes , 1998 .

[62]  Jörg Polzehl,et al.  Simultaneous bootstrap confidence bands in nonparametric regression , 1998 .

[63]  Jianqing Fan,et al.  Local maximum likelihood estimation and inference , 1998 .

[64]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[65]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[66]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[67]  W. Härdle,et al.  Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .

[68]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[69]  Sanford Weisberg,et al.  ADAPTING FOR THE MISSING LINK , 1994 .

[70]  Bani K. Mallick,et al.  Generalized linear models with unknown link functions , 1994 .

[71]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[72]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[73]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[74]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[75]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[76]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[77]  James J. Heckman,et al.  Handbook of Econometrics , 1985 .

[78]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[79]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[80]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[81]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[82]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[83]  E. Nadaraya On Estimating Regression , 1964 .