Defect-free fabrication of nano-disk and nano-wire by fusion of bio-template and neutral beam etching

We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.

[1]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[2]  S. Samukawa,et al.  Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source , 2002 .

[3]  J Misiewicz,et al.  Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films , 2009, Nanotechnology.

[4]  S. Samukawa,et al.  High-Efficiency Low Energy Neutral Beam Generation Using Negative Ions in Pulsed Plasma , 2001 .

[5]  Yoshitaka Okada,et al.  Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell , 2009 .

[6]  V. A. Burdov,et al.  Optical gap of silicon crystallites embedded in various wide-band amorphous matrices: role of environment , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Makoto Konagai,et al.  Photoluminescence from Silicon Quantum Dots in Si Quantum Dots/Amorphous SiC Superlattice , 2007 .

[9]  Gavin Conibeer,et al.  Silicon nanostructures for third generation photovoltaic solar cells , 2006 .

[10]  Gavin Conibeer,et al.  Silicon quantum dot nanostructures for tandem photovoltaic cells , 2008 .

[11]  T. Fuyuki,et al.  Two-Dimensional Si-Nanodisk Array Fabricated Using Bio-Nano-Process and Neutral Beam Etching for Realistic Quantum Effect Devices , 2009 .

[12]  Ichiro Yamashita,et al.  Fabrication of a two-dimensional array of nano-particles using ferritin molecule , 2001 .

[13]  W. Marsden I and J , 2012 .

[14]  Diana L. Huffaker,et al.  Improved device performance of InAs∕GaAs quantum dot solar cells with GaP strain compensation layers , 2007 .

[15]  Takashi Matsukawa,et al.  Low Temperature, Beam-Orientation-Dependent, Lattice-Plane-Independent, and Damage-Free Oxidation for Three-Dimensional Structure by Neutral Beam Oxidation , 2009 .

[16]  Y. Okada,et al.  Quantum size effects in GaAs nanodisks fabricated using a combination of the bio-template technique and neutral beam etching , 2013, Nanotechnology.

[17]  H. Flyvbjerg,et al.  Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits , 2007 .

[18]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[19]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[20]  Sotirios Baskoutas,et al.  Size-dependent band gap of colloidal quantum dots , 2006 .

[21]  Vladimir M. Aroutiounian,et al.  Quantum dot solar cells , 2001, SPIE Optics + Photonics.

[22]  Gavin Conibeer,et al.  Silicon quantum dot/crystalline silicon solar cells , 2008, Nanotechnology.

[23]  M. Takenaka,et al.  Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping. , 2012, Optics express.

[24]  I. Grozdanov,et al.  Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form , 2005 .

[25]  I. Yamashita,et al.  Improvement of Co3O4 Nanoparticle Synthesis in Apoferritin Cavity by Outer Surface PEGylation , 2008 .

[26]  K. Endo,et al.  High-Performance Three-Terminal Fin Field-Effect Transistors Fabricated by a Combination of Damage-Free Neutral-Beam Etching and Neutral-Beam Oxidation , 2010 .

[27]  Lin-Wang Wang,et al.  Cadmium selenide quantum wires and the transition from 3D to 2D confinement. , 2003, Journal of the American Chemical Society.

[28]  J. Michel,et al.  Toward a Germanium Laser for Integrated Silicon Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  S. Samukawa,et al.  Effects of formation of mini-bands in two-dimensional array of silicon nanodisks with SiC interlayer for quantum dot solar cells , 2013, Nanotechnology.