Energetic-lattice based optimization. (L'optimization par trellis-énergetique)

Hierarchical segmentation has been a model which both identifies with the construct of extracting a tree structured model of the image, while also interpreting it as an optimization problem of the optimal scale selection. Hierarchical processing is an emerging field of problems in computer vision and hyperspectral image processing community, on account of its ability to structure high-dimensional data. Chapter 1 discusses two important concepts of Braids and Energetic lattices. A braid of partitions is a richer hierarchical partition model that provides multiple locally nonnested partitioning, while being globally a hierarchical partitioning of the space. The problem of optimization on hierarchies and further braids are non-tractable due the combinatorial nature of the problem. We provide conditions, of h-increasingness, scaleincreasingness on the energy defined on partitions, to extract unique and monotonically ordered minimal partitions. Furthermore these conditions are found to be coherent with the Braid structure to perform constrained optimization on hierarchies, and more generally Braids. Chapter 2 demonstrates the Energetic lattice, and how it generalizes the Lagrangian formulation of the constrained optimization problem on hierarchies. Finally in Chapter 3 we apply the method of optimization using energetic lattices to the problem of extraction of segmentations from a hierarchy, that are proximal to a ground truth set. Chapter 4 we show how one moves from the energetic lattice on hierarchies and braids, to a numerical lattice of Jordan Curves which define a continuous model of hierarchical segmentation. This model enables also to compose different functions and hierarchies. Chapter 5 compiles the scale-climbing algorithms by Guigues and Salembier-Garrido, over the hierarchies of partitions, and provides the new dynamic program for the Braids of partitions. Further it discusses a perspective on using intersection graphs to solve the optimal cut problem, and identities “Partition Graphs” to be one of the good graph structures to model partition selection. It finally concludes by formulating the optimal cut problem on hierarchies as a flow-maximization on a tree structure, the case of braids are also discussed.

[1]  Christer O. Kiselman,et al.  Digital Jordan Curve Theorems , 2000, DGCI.

[2]  Song Wang,et al.  Globally Optimal Grouping for Symmetric Closed Boundaries by Combining Boundary and Region Information , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Luís Garrido Ostermann Hierarchical region based processing of images and video sequences: application to filtering, segmentation and information retrieval , 2002 .

[4]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ullrich Köthe,et al.  Globally Optimal Closed-Surface Segmentation for Connectomics , 2012, ECCV.

[6]  Hervé Le Men,et al.  Scale-Sets Image Analysis , 2005, International Journal of Computer Vision.

[7]  Yair Shoham,et al.  Efficient bit allocation for an arbitrary set of quantizers [speech coding] , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[9]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[10]  Ferran Marqués,et al.  Supervised Assessment of Segmentation Hierarchies , 2012, ECCV.

[11]  B. Leclerc Description combinatoire des ultramétriques , 1981 .

[12]  K Ramchandran,et al.  Best wavelet packet bases in a rate-distortion sense , 1993, IEEE Trans. Image Process..

[13]  Michael Patriksson,et al.  Introduction to Continuous Optimization , 2013 .

[14]  Jean Cousty,et al.  Incremental Algorithm for Hierarchical Minimum Spanning Forests and Saliency of Watershed Cuts , 2011, ISMM.

[15]  Philippe Salembier,et al.  Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval , 2000, IEEE Trans. Image Process..

[16]  Nir Friedman,et al.  Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .

[17]  Pierre Soille,et al.  On Morphological Hierarchical Representations for Image Processing and Spatial Data Clustering , 2010, WADGMM.

[18]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Serge Beucher,et al.  Watershed, Hierarchical Segmentation and Waterfall Algorithm , 1994, ISMM.

[20]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[21]  Lattre de Tassigny Boundary Extraction in Natural Images Using Ultrametric Contour Maps , 2006 .

[22]  Arbelaez Escalante,et al.  Une approche métrique pour la segmentation d'images , 2005 .

[23]  Duane W. DeTemple,et al.  A characterization and hereditary properties for partitoon graphs , 1993, Discret. Math..

[24]  Huseyin Gokhan Akcay,et al.  Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Pierre Soille,et al.  Local Mutual Information for Dissimilarity-Based Image Segmentation , 2014, Journal of Mathematical Imaging and Vision.

[26]  Martial Hebert,et al.  A Measure for Objective Evaluation of Image Segmentation Algorithms , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[27]  Frédo Durand,et al.  A Topological Approach to Hierarchical Segmentation using Mean Shift , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Camille Couprie,et al.  Power Watershed: A Unifying Graph-Based Optimization Framework , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Laurent Najman,et al.  On the Equivalence Between Hierarchical Segmentations and Ultrametric Watersheds , 2010, Journal of Mathematical Imaging and Vision.

[31]  Gilles Bertrand,et al.  Topological gray-scale watershed transformation , 1997, Optics & Photonics.

[32]  Laurent Guigues,et al.  Modèles multi-échelles pour la segmentation d'images , 2003 .

[33]  Ferran Marqués,et al.  Region Merging Techniques Using Information Theory Statistical Measures , 2010, IEEE Transactions on Image Processing.

[34]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[35]  Leo Grady,et al.  Weights and Topology: A Study of the Effects of Graph Construction on 3D Image Segmentation , 2008, MICCAI.

[36]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation , 2014, IEEE Transactions on Image Processing.

[37]  Silvia Valero,et al.  Hyperspectral Image Representation and Processing With Binary Partition Trees , 2013, IEEE Transactions on Image Processing.

[38]  Aaron D. Ward,et al.  Segmentation with Non-linear Regional Constraints via Line-Search Cuts , 2012, ECCV.

[39]  Stephen P. Boyd,et al.  Geometric programming duals of channel capacity and rate distortion , 2004, IEEE Transactions on Information Theory.

[40]  Bernd Etzelmüller,et al.  Mean-curvature watersheds: A simple method for segmentation of a digital elevation model into terrain units , 2012 .

[41]  Allan Hanbury,et al.  How Do Superpixels Affect Image Segmentation? , 2008, CIARP.

[42]  Jitendra Malik,et al.  Recovering human body configurations: combining segmentation and recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  Jean Serra,et al.  Hausdorff distances and interpolations , 1998 .

[44]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[45]  Fernand Meyer,et al.  The Viscous Watershed Transform , 2005, Journal of Mathematical Imaging and Vision.

[46]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[47]  Yll Haxhimusa,et al.  Constructing Stochastic Pyramids by MIDES - Maximal Independent Directed Edge Set , 2003, GbRPR.

[48]  Lorna Stewart,et al.  Maximum independent set and maximum clique algorithms for overlap graphs , 2003, Discret. Appl. Math..

[49]  Pierre Soille,et al.  Constrained connectivity for hierarchical image partitioning and simplification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Dimitri P. Bertsekas,et al.  Nonlinear Programming 2 , 2005 .

[51]  Jean Paul Frédéric Serra,et al.  Optima on Hierarchies of Partitions , 2013, ISMM.

[52]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Mung Chiang,et al.  Duality between channel capacity and rate distortion with two-sided state information , 2002, IEEE Trans. Inf. Theory.

[54]  Philippe Salembier Connected Operators based on Tree Pruning Strategies , 2013 .

[55]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[56]  D. M. Topkis Supermodularity and Complementarity , 1998 .

[57]  Pierre Soille,et al.  Constrained Connectivity and Transition Regions , 2009, ISMM.

[58]  Leo Grady,et al.  A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[59]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[60]  Lei Zhang,et al.  Evaluation of Image Segmentation Quality by Adaptive Ground Truth Composition , 2012, ECCV.

[61]  Alexei A. Efros,et al.  Improving Spatial Support for Objects via Multiple Segmentations , 2007, BMVC.

[62]  Hervé Le Men,et al.  The hierarchy of the cocoons of a graph and its application to image segmentation , 2003, Pattern Recognit. Lett..

[63]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[64]  Camille Couprie,et al.  Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[65]  Laura Igual,et al.  Level Lines Selection with Variational Models for Segmentation and Encoding , 2006, Journal of Mathematical Imaging and Vision.

[66]  Terry A. McKee,et al.  1. Intersection Graphs , 1999 .

[67]  ROBERT LAGANIÈRE,et al.  A morphological operator for corner detection , 1998, Pattern Recognit..

[68]  Christian Ronse,et al.  Orders on Partial Partitions and Maximal Partitioning of Sets , 2011, ISMM.

[69]  Jocelyn Chanussot,et al.  Multiscale stochastic watershed for unsupervised hyperspectral image segmentation , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[70]  H. Cardot,et al.  Hierarchical Mesh Segmentation Using Waterfall and Dynamics , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[71]  Patrice Aknin,et al.  Hierarchical and multiscale Mean Shift segmentation of population grids , 2013, ESANN.

[72]  James H. Elder,et al.  Design and perceptual validation of performance measures for salient object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[73]  Jean Cousty,et al.  Hierarchies and Climbing Energies , 2012, CIARP.

[74]  Erik Melin,et al.  Digital Khalimsky Manifolds , 2009, Journal of Mathematical Imaging and Vision.

[75]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[76]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[77]  Jean Paul Frédéric Serra,et al.  Ground Truth Energies for Hierarchies of Segmentations , 2013, ISMM.

[78]  Jean Paul Frédéric Serra,et al.  Global-local optimizations by hierarchical cuts and climbing energies , 2013, Pattern Recognit..

[79]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[80]  Hichem Sahli,et al.  Multiscale gradient watersheds of color images , 2003, IEEE Trans. Image Process..

[81]  Fernand Meyer,et al.  Adjunctions on the Lattice of Dendrograms , 2013, GbRPR.

[82]  Gerhard Reinelt,et al.  Globally Optimal Image Partitioning by Multicuts , 2011, EMMCVPR.

[83]  Jürgen Schmidhuber,et al.  A Learning Framework for Morphological Operators Using Counter-Harmonic Mean , 2012, ISMM.

[84]  Christian Ronse Ordering Partial Partitions for Image Segmentation and Filtering: Merging, Creating and Inflating Blocks , 2013, Journal of Mathematical Imaging and Vision.

[85]  Christian Ronse,et al.  Partial Partitions, Partial Connections and Connective Segmentation , 2008, Journal of Mathematical Imaging and Vision.

[86]  Yongchao Xu Tree-based shape spaces : definition and applications in image processing and computer vision. (Espaces de formes basés sur des arbres : définition et applications en traitement d'images et vision par ordinateur) , 2013 .

[87]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[88]  Jean Paul Frédéric Serra,et al.  Scale Space Operators on Hierarchies of Segmentations , 2013, SSVM.

[89]  Michel Couprie,et al.  Some links between min-cuts, optimal spanning forests and watersheds , 2007, ISMM.

[90]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[91]  Philip A. Chou,et al.  Optimal pruning with applications to tree-structured source coding and modeling , 1989, IEEE Trans. Inf. Theory.

[92]  Yll Haxhimusa,et al.  Segmentation Graph Hierarchies , 2004, SSPR/SPR.

[93]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[94]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Yll Haxhimusa,et al.  The Structurally Optimal Dual Graph Pyramid and its Application in Image Partitioning , 2007, DISKI.

[96]  J. Tuset Image segmentation evaluation and its application to object detection , 2014 .

[97]  Laurent D. Cohen,et al.  Constrained image segmentation from hierarchical boundaries , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[98]  Gilles Bertrand,et al.  Enhanced computation method of topological smoothing on shared memory parallel machines , 2005, Journal of Mathematical Imaging and Vision.

[99]  Pascal Monasse,et al.  Fast computation of a contrast-invariant image representation , 2000, IEEE Trans. Image Process..

[100]  Joshua D. Schwartz,et al.  Hierarchical Matching of Deformable Shapes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[101]  Jean Cousty,et al.  Climbing: A Unified Approach for Global Constraints on Hierarchical Segmentation , 2012, ECCV Workshops.

[102]  Gilles Bertrand,et al.  Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[104]  Jitendra Malik,et al.  An empirical approach to grouping and segmentation , 2002 .

[105]  Edwin Diday,et al.  Spatial Pyramidal Clustering Based on a Tessellation , 2004 .

[106]  Pascal Monasse,et al.  Image Visualization and Restoration by Curvature Motions , 2011, Multiscale Model. Simul..

[107]  Fernand Meyer,et al.  Morphological Operators for Flooding, Leveling and Filtering Images Using Graphs , 2007, GbRPR.

[108]  Marcel Worring,et al.  Watersnakes: Energy-Driven Watershed Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  Jean Paul Frédéric Serra,et al.  Fusion of ground truths and hierarchies of segmentations , 2014, Pattern Recognit. Lett..

[110]  William Brendel,et al.  Segmentation as Maximum-Weight Independent Set , 2010, NIPS.

[111]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[112]  Jean Cousty,et al.  Raising in watershed lattices , 2008, 2008 15th IEEE International Conference on Image Processing.