Location-Sensitive User Profiling Using Crowdsourced Labels

In this paper, we investigate the impact of spatial variation on the construction of location-sensitive user profiles. We demonstrate evidence of spatial variation over a collection of Twitter Lists, wherein we find that crowdsourced labels are constrained by distance. For example, that energy in San Francisco is more associated with the green movement, whereas in Houston it is more associated with oil and gas. We propose a three-step framework for location-sensitive user profiling: first, it constructs a crowdsourced label similarity graph, where each labeler and labelee are annotated with a geographic coordinate; second, it transforms this similarity graph into a directed weighted tree that imposes a hierarchical structure over these labels; third, it embeds this location-sensitive folksonomy into a user profile ranking algorithm that outputs a ranked list of candidate labels for a partially observed user profile. Through extensive experiments over a Twitter list dataset, we demonstrate the effectiveness of this location-sensitive user profiling.

[1]  Jon M. Kleinberg,et al.  Spatial variation in search engine queries , 2008, WWW.

[2]  Kevin Chen-Chuan Chang,et al.  User profiling in an ego network: co-profiling attributes and relationships , 2014, WWW.

[3]  Zi Huang,et al.  A temporal context-aware model for user behavior modeling in social media systems , 2014, SIGMOD Conference.

[4]  Brian D. Davison,et al.  Co-factorization machines: modeling user interests and predicting individual decisions in Twitter , 2013, WSDM.

[5]  Rodrygo L. T. Santos,et al.  On Tag Recommendation for Expertise Profiling: A Case Study in the Scientific Domain , 2015, WSDM.

[6]  Hui Xiong,et al.  Enhancing Collaborative Filtering by User Interest Expansion via Personalized Ranking , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Cecilia Mascolo,et al.  Far from the eyes, close on the web: impact of geographic distance on online social interactions , 2012, WOSN '12.

[8]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[9]  Alex Sandro da Cunha Rego,et al.  A supervised learning approach to detect subsumption relations between tags in folksonomies , 2015, SAC.

[10]  Christopher H. Brooks,et al.  Improved annotation of the blogosphere via autotagging and hierarchical clustering , 2006, WWW '06.

[11]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[12]  P. Schmitz,et al.  Inducing Ontology from Flickr Tags , 2006 .

[13]  Yu Hao,et al.  Tackling Data Sparseness in Recommendation using Social Media based Topic Hierarchy Modeling , 2015, IJCAI.

[14]  James Caverlee,et al.  Exploiting Geo-Spatial Preference for Personalized Expert Recommendation , 2015, RecSys.

[15]  Dilpreet Singh,et al.  Personalized Recommendation of Twitter Lists using Content and Network Information , 2014, ICWSM.

[16]  Suju Rajan,et al.  Building Discriminative User Profiles for Large-scale Content Recommendation , 2015, KDD.

[17]  Fei Wang,et al.  Social contextual recommendation , 2012, CIKM.

[18]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[19]  C. Lee Giles,et al.  Automatic tag recommendation for metadata annotation using probabilistic topic modeling , 2013, JCDL '13.

[20]  Eduard H. Hovy,et al.  Weakly Supervised User Profile Extraction from Twitter , 2014, ACL.

[21]  Teruo Higashino,et al.  Twitter user profiling based on text and community mining for market analysis , 2013, Knowl. Based Syst..

[22]  David Lo,et al.  Tag recommendation in software information sites , 2013, 2013 10th Working Conference on Mining Software Repositories (MSR).

[23]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[24]  Zhe Zhao,et al.  Improving User Topic Interest Profiles by Behavior Factorization , 2015, WWW.

[25]  Mirjam Wattenhofer,et al.  YouTube around the world: geographic popularity of videos , 2012, WWW.

[26]  Krishna P. Gummadi,et al.  Deep Twitter diving: exploring topical groups in microblogs at scale , 2014, CSCW.

[27]  Hector Garcia-Molina,et al.  Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems , 2006 .

[28]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[29]  Yang Song,et al.  Hierarchical tag visualization and application for tag recommendations , 2011, CIKM '11.

[30]  Haixun Wang,et al.  Automatic taxonomy construction from keywords , 2012, KDD.

[31]  Timothy Baldwin,et al.  langid.py: An Off-the-shelf Language Identification Tool , 2012, ACL.

[32]  David J. Crandall,et al.  Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities , 2012, WSDM '12.

[33]  Kristina Lerman,et al.  Constructing folksonomies from user-specified relations on flickr , 2009, WWW '09.

[34]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[35]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[36]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[37]  Feng Qiu,et al.  Automatic identification of user interest for personalized search , 2006, WWW '06.

[38]  Krishna P. Gummadi,et al.  Cognos: crowdsourcing search for topic experts in microblogs , 2012, SIGIR '12.

[39]  James Caverlee,et al.  Who is the barbecue king of texas?: a geo-spatial approach to finding local experts on twitter , 2014, SIGIR.

[40]  Yong Liu,et al.  Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction , 2014, SIGIR.

[41]  Huan Liu,et al.  Exploring Implicit Hierarchical Structures for Recommender Systems , 2015, IJCAI.

[42]  Alexander J. Smola,et al.  Scalable distributed inference of dynamic user interests for behavioral targeting , 2011, KDD.

[43]  Nisheeth Shrivastava,et al.  Know your personalization: learning topic level personalization in online services , 2012, WWW.

[44]  Sujit Dey,et al.  Construction and evaluation of ontological tag trees , 2015, Expert Syst. Appl..