On ℤprℤps-additive codes
暂无分享,去创建一个
[1] Josep Rifà,et al. [FORMULA] -linear codes: generator matrices and duality , 2010 .
[2] Jaume Pujol,et al. Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.
[3] Irfan Siap,et al. The Structure of Z 2 Z 2 s-Additive Codes: Bounds on the Minimum Distance , 2013 .
[4] Jaume Pujol,et al. $${{{\mathbb Z}_2}{{\mathbb Z}_4}}$$ -linear codes: generator matrices and duality , 2007, Des. Codes Cryptogr..
[5] Lorena Ronquillo,et al. Z2Z4-Additive Perdect Codes in Steganography , 2011 .
[6] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[7] Richard C. Singleton,et al. Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.
[8] Taher Abualrub,et al. On ℤ2ℤ2[u]-additive codes , 2015, Int. J. Comput. Math..
[9] B. Yildiz,et al. A GENERALIZATION OF THE LEE WEIGHT TO Zpk , 2012 .
[10] CarletC.. Z2k-linear codes , 1998 .
[11] Jaume Pujol,et al. Z2Z4-linear codes: generator matrices and duality , 2007, ArXiv.
[12] P. Delsarte. AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .
[13] Steven T. Dougherty,et al. Maximum distance codes over rings of order 4 , 2001, IEEE Trans. Inf. Theory.
[14] Philippe Delsarte,et al. Association Schemes and Coding Theory , 1998, IEEE Trans. Inf. Theory.
[15] J. Borges,et al. Maximum distance separable codes over $${\mathbb{Z}_4}$$ and $${\mathbb{Z}_2 \times \mathbb{Z}_4}$$ , 2011 .
[16] Josep Rifà,et al. Product perfect Z2 Z4-linear codes in steganography , 2010, 2010 International Symposium On Information Theory & Its Applications.
[17] Claude Carlet. Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.
[18] Helena Rifà-Pous,et al. ℤ2ℤ4-additive perfect codes in Steganography , 2011, Adv. Math. Commun..