On ℤprℤps-additive codes

In this paper, we study the algebraic structure of -additive codes which are -submodules where is prime, and and are positive integers. -additive codes naturally generalize and -additive codes which have been introduced recently. The results obtained in this work generalize a great amount of the studies done on additive codes. Especially, we determine the standard forms of generator and parity-check matrices for this family of codes. This leads to the identification of the type and the cardinalities of these codes. Furthermore, we present some bounds on the minimum distance and examples that attain these bounds. Finally, we present some illustrative examples for some special cases.

[1]  Josep Rifà,et al.  [FORMULA] -linear codes: generator matrices and duality , 2010 .

[2]  Jaume Pujol,et al.  Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.

[3]  Irfan Siap,et al.  The Structure of Z 2 Z 2 s-Additive Codes: Bounds on the Minimum Distance , 2013 .

[4]  Jaume Pujol,et al.  $${{{\mathbb Z}_2}{{\mathbb Z}_4}}$$ -linear codes: generator matrices and duality , 2007, Des. Codes Cryptogr..

[5]  Lorena Ronquillo,et al.  Z2Z4-Additive Perdect Codes in Steganography , 2011 .

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[8]  Taher Abualrub,et al.  On ℤ2ℤ2[u]-additive codes , 2015, Int. J. Comput. Math..

[9]  B. Yildiz,et al.  A GENERALIZATION OF THE LEE WEIGHT TO Zpk , 2012 .

[10]  CarletC. Z2k-linear codes , 1998 .

[11]  Jaume Pujol,et al.  Z2Z4-linear codes: generator matrices and duality , 2007, ArXiv.

[12]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[13]  Steven T. Dougherty,et al.  Maximum distance codes over rings of order 4 , 2001, IEEE Trans. Inf. Theory.

[14]  Philippe Delsarte,et al.  Association Schemes and Coding Theory , 1998, IEEE Trans. Inf. Theory.

[15]  J. Borges,et al.  Maximum distance separable codes over $${\mathbb{Z}_4}$$ and $${\mathbb{Z}_2 \times \mathbb{Z}_4}$$ , 2011 .

[16]  Josep Rifà,et al.  Product perfect Z2 Z4-linear codes in steganography , 2010, 2010 International Symposium On Information Theory & Its Applications.

[17]  Claude Carlet Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.

[18]  Helena Rifà-Pous,et al.  ℤ2ℤ4-additive perfect codes in Steganography , 2011, Adv. Math. Commun..