Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation

Abstract We demonstrate for the first time, the real lifetime response of mixed halide perovskite solar cells (PSCs) for >1000 h under outdoor conditions and the exceptional photoresponse observed at low-light intensities attributed to the ionic-electronic nature of the material. The investigated devices were fabricated by utilizing mixed perovskites containing formamidinium (FA) and methylammonium (MA) cations, in a one step solution-process method through a solvent engineering approach. The devices’ architecture is FTO/TiO2 (blocking layer) TiO2 (mesoporous)/FAPbI3(0.85)MAPbBr3(0.15)/Spiro-OMeTAD/Au. Notably, low short circuit current (Jsc) was observed at low light intensities ( 1000 h under real outdoor conditions and the strong ionic component observed at low light irradiation.

[1]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[2]  J. Bisquert,et al.  Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[3]  William S. Y. Wong,et al.  Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly. , 2016, Nanoscale.

[4]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[5]  R. Berger,et al.  Local Time-Dependent Charging in a Perovskite Solar Cell. , 2016, ACS applied materials & interfaces.

[6]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[7]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[8]  Wei Huang,et al.  Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches , 2016 .

[9]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[10]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[11]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[12]  W. Que,et al.  High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer , 2015 .

[13]  G. Garcia‐Belmonte,et al.  Mechanisms of charge accumulation in the dark operation of perovskite solar cells. , 2016, Physical chemistry chemical physics : PCCP.

[14]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[15]  Iris Visoly-Fisher,et al.  Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. , 2015, The journal of physical chemistry letters.

[16]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[17]  Yang Yang,et al.  Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives , 2015 .

[18]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[19]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[20]  G. Gigli,et al.  NiO/MAPbI(3-x)Clx/PCBM: a model case for an improved understanding of inverted mesoscopic solar cells. , 2015, ACS applied materials & interfaces.

[21]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[22]  X. Duan,et al.  Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites. , 2016, ACS nano.

[23]  F. Krebs,et al.  Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation , 2006 .

[24]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[25]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[26]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[27]  Wenjun Zhang,et al.  p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. , 2015, Dalton transactions.

[28]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[29]  T. Peltola,et al.  Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? , 2016 .

[30]  F. Krebs,et al.  Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells , 2006 .

[31]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[32]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[33]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[34]  K. Wong,et al.  Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance , 2016 .

[35]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[36]  A. Di Carlo,et al.  In situ observation of heat-induced degradation of perovskite solar cells , 2016, Nature Energy.

[37]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[38]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[39]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[40]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[41]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[42]  N. Zheng,et al.  Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[43]  Nakita K. Noel,et al.  Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[44]  Wenjun Zhang,et al.  Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes. , 2014, ACS applied materials & interfaces.

[45]  E. Mosconi,et al.  Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics , 2016, Proceedings of the nanoGe Fall Meeting 2018.

[46]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[47]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[48]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[49]  M. Nazeeruddin,et al.  Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell , 2014 .

[50]  Y. Liu,et al.  Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell , 2015 .

[51]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[52]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[53]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[54]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[55]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[56]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[57]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[58]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[59]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .

[60]  Erik M. J. Johansson,et al.  Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. , 2013, Nanoscale.

[61]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[62]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[63]  Yan Shen,et al.  Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture , 2015 .

[64]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[65]  H. Snaith,et al.  Cation exchange for thin film lead iodide perovskite interconversion , 2016 .

[66]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[67]  K. Ho,et al.  A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. , 2015, The journal of physical chemistry letters.

[68]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[69]  X. Xing,et al.  Large resistive switching and switchable photovoltaic response in ferroelectric doped BiFeO3-based thin films by chemical solution deposition , 2015 .

[70]  Huawei Zhou,et al.  Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. , 2014, The journal of physical chemistry letters.

[71]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[72]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[73]  P. Troshin,et al.  The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium-lead iodide (MAPbI3) perovskite solar cells. , 2015, Chemical communications.

[74]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.