ON THE EVOLUTION OF MAGNETIC WHITE DWARFS

We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-β parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1–50 kG, which is much smaller than the typical 1–1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B ≳ 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff ≲ 10,000 K cool significantly slower than non-magnetic degenerates.

[1]  B. Gänsicke,et al.  Magnetic White Dwarfs , 2015, 1504.08072.

[2]  M. Hollands,et al.  The incidence of magnetic fields in cool DZ white dwarfs , 2015, 1503.03866.

[3]  C. Thompson,et al.  SPIN AND MAGNETISM OF WHITE DWARFS , 2015, 1501.07197.

[4]  C. Tout,et al.  Merging binary stars and the magnetic white dwarfs , 2014, 1412.5662.

[5]  B. Freytag,et al.  CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES , 2014, 1412.1789.

[6]  B. Freytag,et al.  Properties of small-scale magnetism of stellar atmospheres (Special Issue : Recent results from Hinode) , 2014 .

[7]  G. Wade,et al.  Suppression of cooling by strong magnetic fields in white dwarf stars , 2014, Nature.

[8]  D. Maoz,et al.  Johannes and the seven dwarfs: Kepler detection of low-level day-timescale periodic photometric variations in white dwarfs , 2014, 1409.5129.

[9]  D. Soderblom,et al.  WHITE DWARF COSMOCHRONOLOGY IN THE SOLAR NEIGHBORHOOD , 2014, 1406.5173.

[10]  A. Robin,et al.  Gaia photometry for white dwarfs , 2014, 1403.6045.

[11]  C. Tout,et al.  The Most Magnetic Stars , 2013, 1310.2696.

[12]  H. Ludwig,et al.  Spectroscopic analysis of DA white dwarfs with 3D model atmospheres , 2013, 1309.0886.

[13]  A. Reiners,et al.  Three-dimensional simulations of near-surface convection in main-sequence stars - I. Overall structure , 2013, 1308.4874.

[14]  Christian Knigge,et al.  MEASURING THE ROTATIONAL PERIODS OF ISOLATED MAGNETIC WHITE DWARFS , 2013 .

[15]  S. Hodgkin,et al.  SDSS J000555.90−100213.5: a hot, magnetic carbon-dominated atmosphere WD rotating with a 2.1 d period , 2013, 1305.2219.

[16]  J. Kalirai,et al.  The progenitors of magnetic white dwarfs in open clusters , 2013, 1304.7171.

[17]  B. Freytag,et al.  Pure-hydrogen 3D model atmospheres of cool white dwarfs , 2013, 1302.2013.

[18]  S. O. Kepler,et al.  Magnetic white dwarf stars in the Sloan Digital Sky Survey , 2012, 1211.5709.

[19]  J. Isern,et al.  Magnetic white dwarfs with debris discs , 2012, 1209.6232.

[20]  M. Burleigh,et al.  High-field magnetic white dwarfs as the progeny of early-type stars? , 2013 .

[21]  L. Fossati,et al.  On the incidence of weak magnetic fields in DA white dwarfs , 2012, 1208.3650.

[22]  S. Vennes,et al.  A study of high proper-motion white dwarfs – I. Spectropolarimetry of a cool hydrogen-rich sample† , 2012, 1206.5113.

[23]  D. Maoz,et al.  THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK , 2012, 1202.5472.

[24]  Noemi Giammichele,et al.  KNOW YOUR NEIGHBORHOOD: A DETAILED MODEL ATMOSPHERE ANALYSIS OF NEARBY WHITE DWARFS , 2012, 1202.5581.

[25]  A. Córsico,et al.  DOUBLE DEGENERATE MERGERS AS PROGENITORS OF HIGH-FIELD MAGNETIC WHITE DWARFS , 2012, 1202.0461.

[26]  W. Schaffenberger,et al.  Simulations of stellar convection with CO5BOLD , 2011, J. Comput. Phys..

[27]  Fabian Euchner,et al.  Two new young, wide, magnetic + non-magnetic double-degenerate binary systems , 2011, 1111.7015.

[28]  M. Ruiz,et al.  A SPECTROSCOPIC SURVEY AND ANALYSIS OF BRIGHT, HYDROGEN-RICH WHITE DWARFS , 2011, 1109.3171.

[29]  M. Schüssler,et al.  UNIVERSALITY OF THE SMALL-SCALE DYNAMO MECHANISM , 2011, 1105.0546.

[30]  G. Wade,et al.  A STUDY OF THE PHOTOMETRIC VARIABILITY OF THE PECULIAR MAGNETIC WHITE DWARF WD 1953−011 , 2011, 1103.5778.

[31]  P. Bergeron,et al.  AN IMPROVED SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 4 , 2011, 1102.0056.

[32]  U. Bastian,et al.  Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317-853 from an HST parallax measurement , 2010, 1007.4978.

[33]  A. M. Title,et al.  SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION , 2010, 1006.4117.

[34]  B. Gaensicke,et al.  Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey , 2009, 0907.2372.

[35]  Robert F. Stein,et al.  Solar Surface Convection , 2009, Living reviews in solar physics.

[36]  M. Knoelker,et al.  RADIATIVE MAGNETOHYDRODYNAMIC SIMULATION OF SUNSPOT STRUCTURE , 2008, 0808.3294.

[37]  G. Fontaine,et al.  The Pulsating White Dwarf Stars , 2008 .

[38]  David K. Lai,et al.  SDSS J142625.71+575218.3: The First Pulsating White Dwarf with a Large Detectable Magnetic Field , 2008, 0807.1112.

[39]  S. O. Kepler,et al.  SDSS DR7 WHITE DWARF CATALOG , 2007, 1212.1222.

[40]  M. Schuessler,et al.  A solar surface dynamo , 2007, astro-ph/0702681.

[41]  H. Schmid,et al.  The Fraction of DA White Dwarfs with Kilo-Gauss Magnetic Fields , 2006, astro-ph/0610875.

[42]  S. Vennes,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 SPECTROPOLARIMETRIC SURVEY OF HYDROGEN-RICH WHITE DWARF STARS , 2008 .

[43]  E. Phinney,et al.  White Dwarf Kinematics vs Mass , 2006, 1206.1056.

[44]  G. Chabrier,et al.  Heat blanketing envelopes and thermal radiation of strongly magnetized neutron stars , 2006, astro-ph/0611014.

[45]  M. Schuessler,et al.  Magnetoconvection in a Sunspot Umbra , 2006, astro-ph/0603078.

[46]  ini,et al.  The magnetic structure of neutron stars and their surface-to-core temperature relation , 2005, astro-ph/0508415.

[47]  F. Figueras,et al.  Simulating Gaia performances on white dwarfs , 2005, astro-ph/0504409.

[48]  D. Wickramasinghe,et al.  The origin of the magnetic fields in white dwarfs , 2005 .

[49]  A. Vögler,et al.  Approximations for non-grey radiative transfer in numerical simulations of the solar photosphere , 2004 .

[50]  D. Lamb,et al.  Magnetic White Dwarfs from the Sloan Digital Sky Survey: The First Data Release , 2003, astro-ph/0307121.

[51]  J. Liebert,et al.  The True Incidence of Magnetism Among Field White Dwarfs , 2002, astro-ph/0210319.

[52]  D. Lamb,et al.  MAGNETIC WHITE DWARFS FROM THE SDSS . THE FIRST DATA RELEASE , 2003 .

[53]  Pierre Brassard,et al.  The Potential of White Dwarf Cosmochronology , 2001 .

[54]  S. Jordan Magnetic White Dwarfs , 2001 .

[55]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[56]  Fausto Cattaneo,et al.  On the Origin of Magnetic Fields in the Quiet Photosphere , 1999 .

[57]  J. Main,et al.  Hydrogen atom in combined electric and magnetic fields with arbitrary mutual orientations , 1997, quant-ph/9709011.

[58]  D. Christian,et al.  EUVE J0317 — 855: a rapidly rotating, high-field magnetic white dwarf , 1997 .

[59]  P. Matthews,et al.  Photospheric convection in strong magnetic fields , 1996 .

[60]  J. A. Markiel,et al.  Dynamo Generation of Magnetic Fields in White Dwarfs , 1995 .

[61]  James Liebert,et al.  A spectroscopic determination of the mass distribution of DA white dwarfs , 1992 .

[62]  J. Liebert,et al.  Discovery of Helium in the Atmospheres of Cool DA Stars and Evidence for Convective Mixing , 1990 .

[63]  G. Fontaine,et al.  Evolutionary models for pulsation studies of white dwarfs , 1990 .

[64]  B. Martin,et al.  Magnetic blanketing in white dwarfs , 1986 .

[65]  L. Hernquist Thermal structure of magnetized neutron-star envelopes , 1985 .

[66]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[67]  J. Angel,et al.  The magnetic fields of white dwarfs , 1981 .

[68]  B. Martin,et al.  Cyclotron absorption in magnetic white dwarfs. , 1979 .

[69]  M. Ruderman,et al.  Possible Origin of Magnetic Fields in Neutron Stars and Magnetic White Dwarfs , 1973 .