Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.

[1]  A. Wlodawer,et al.  Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. , 2010, Journal of the American Chemical Society.

[2]  V. Verkhusha,et al.  Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. , 2010, Current opinion in chemical biology.

[3]  V. Verkhusha,et al.  Rotational order-disorder structure of fluorescent protein FP480. , 2009, Acta crystallographica. Section D, Biological crystallography.

[4]  Alexander S. Mishin,et al.  Green fluorescent proteins are light-induced electron donors , 2009, Nature chemical biology.

[5]  Vladislav V Verkhusha,et al.  Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. , 2009, Nature chemical biology.

[6]  Zbigniew Dauter,et al.  A Crystallographic Study of Bright Far-Red Fluorescent Protein mKate Reveals pH-induced cis-trans Isomerization of the Chromophore* , 2008, Journal of Biological Chemistry.

[7]  Dmitriy M Chudakov,et al.  Conversion of red fluorescent protein into a bright blue probe. , 2008, Chemistry & biology.

[8]  Atsushi Miyawaki,et al.  Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange. , 2008, Biochemistry.

[9]  J. Wiedenmann,et al.  Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611. , 2008, Journal of the American Chemical Society.

[10]  Vladimir N Uversky,et al.  Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. , 2008, Current protein & peptide science.

[11]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[12]  Joachim Goedhart,et al.  Bright monomeric red fluorescent protein with an extended fluorescence lifetime , 2007, Nature Methods.

[13]  J. Tainer,et al.  The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. , 2007, Journal of the American Chemical Society.

[14]  Christian Eggeling,et al.  1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. , 2007, The Biochemical journal.

[15]  J. Rossjohn,et al.  The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. , 2006, Journal of molecular biology.

[16]  Nathan C Shaner,et al.  Novel chromophores and buried charges control color in mFruits. , 2006, Biochemistry.

[17]  Atsushi Miyawaki,et al.  A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy , 2006, Nature Biotechnology.

[18]  Hetal N. Patel,et al.  Reaction progress of chromophore biogenesis in green fluorescent protein. , 2006, Journal of the American Chemical Society.

[19]  Christian Eggeling,et al.  Structure and mechanism of the reversible photoswitch of a fluorescent protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Hetal N. Patel,et al.  Base Catalysis of Chromophore Formation in Arg96 and Glu222 Variants of Green Fluorescent Protein* , 2005, Journal of Biological Chemistry.

[21]  Ashley M Buckle,et al.  The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. , 2005, Journal of molecular biology.

[22]  X. Shu,et al.  Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. , 2005, Biochemistry.

[23]  Konstantin A Lukyanov,et al.  Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. , 2004, Chemistry & biology.

[24]  B. I. Maksimov,et al.  A Purple-blue Chromoprotein from Goniopora tenuidens Belongs to the DsRed Subfamily of GFP-like Proteins* , 2003, Journal of Biological Chemistry.

[25]  Mark Prescott,et al.  The 2.0-Å Crystal Structure of eqFP611, a Far Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor* , 2003, Journal of Biological Chemistry.

[26]  Konstantin A Lukyanov,et al.  Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with Anthozoa fluorescent proteins. , 2003, The Biochemical journal.

[27]  O. Hoegh‐Guldberg,et al.  The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. , 2003, Structure.

[28]  S J Remington,et al.  Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S J Remington,et al.  Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Inouye,et al.  Chemical nature of the light emitter of the Aequorea green fluorescent protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[33]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[34]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[35]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[37]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[38]  J. Carrington,et al.  A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .

[40]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[41]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .