Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds

We introduce a framework for Bayesian experimental design (BED) with implicit models, where the data-generating distribution is intractable but sampling from it is still possible. In order to find optimal experimental designs for such models, our approach maximises mutual information lower bounds that are parametrised by neural networks. By training a neural network on sampled data, we simultaneously update network parameters and designs using stochastic gradient-ascent. The framework enables experimental design with a variety of prominent lower bounds and can be applied to a wide range of scientific tasks, such as parameter estimation, model discrimination and improving future predictions. Using a set of intractable toy models, we provide a comprehensive empirical comparison of prominent lower bounds applied to the aforementioned tasks. We further validate our framework on a challenging system of stochastic differential equations from epidemiology. MSC2020 subject classifications: Primary 62K05; secondary 62L05.

[1]  David Duvenaud,et al.  Scalable Gradients for Stochastic Differential Equations , 2020, AISTATS.

[2]  Linda J. S. Allen,et al.  Construction of Equivalent Stochastic Differential Equation Models , 2008 .

[3]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[4]  Martin J. Wainwright,et al.  Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization , 2008, IEEE Transactions on Information Theory.

[5]  K. J. Ryan,et al.  Estimating Expected Information Gains for Experimental Designs With Application to the Random Fatigue-Limit Model , 2003 .

[6]  Jukka Corander,et al.  Likelihood-Free Inference by Ratio Estimation , 2016, Bayesian Analysis.

[7]  Zhe Gan,et al.  CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information , 2020, ICML.

[8]  Alexander A. Alemi,et al.  On Variational Bounds of Mutual Information , 2019, ICML.

[9]  L. Allen,et al.  A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis , 2017, Infectious Disease Modelling.

[10]  Aapo Hyvärinen,et al.  Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics , 2012, J. Mach. Learn. Res..

[11]  Markus Hainy,et al.  Likelihood-free simulation-based optimal design with an application to spatial extremes , 2015, Stochastic Environmental Research and Risk Assessment.

[12]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[13]  Michael U. Gutmann,et al.  Sequential Bayesian Experimental Design for Implicit Models via Mutual Information , 2020, ArXiv.

[14]  Michael P. H. Stumpf,et al.  Maximizing the Information Content of Experiments in Systems Biology , 2013, PLoS Comput. Biol..

[15]  Yee Whye Teh,et al.  Variational Bayesian Optimal Experimental Design , 2019, NeurIPS.

[16]  Tom Rainforth,et al.  Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design , 2021, ICML.

[17]  Nigel G. Bean,et al.  An induced natural selection heuristic for finding optimal Bayesian experimental designs , 2017, Comput. Stat. Data Anal..

[18]  M. Gutmann,et al.  Frequency-dependent selection in vaccine-associated pneumococcal population dynamics , 2017, Nature Ecology & Evolution.

[19]  Stefano Ermon,et al.  Understanding the Limitations of Variational Mutual Information Estimators , 2020, ICLR.

[20]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[21]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[22]  David Barber,et al.  The IM algorithm: a variational approach to Information Maximization , 2003, NIPS 2003.

[23]  Anthony N. Pettitt,et al.  A Review of Modern Computational Algorithms for Bayesian Optimal Design , 2016 .

[24]  Yoshua Bengio,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[25]  Anthony N Pettitt,et al.  Bayesian Experimental Design for Models with Intractable Likelihoods , 2013, Biometrics.

[26]  Yanan Fan,et al.  Handbook of Approximate Bayesian Computation , 2018 .

[27]  Markus Hainy,et al.  Optimal Bayesian design for model discrimination via classification , 2018, Statistics and Computing.

[28]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[29]  Michael U. Gutmann,et al.  Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation , 2020, ICML.

[30]  Zhanxing Zhu,et al.  Neural Approximate Sufficient Statistics for Implicit Models , 2021, ICLR.

[31]  L. Allen An Introduction to Stochastic Epidemic Models , 2008 .

[32]  Antony M. Overstall,et al.  Bayesian Design of Experiments Using Approximate Coordinate Exchange , 2017, Technometrics.

[33]  Michael U. Gutmann,et al.  Adaptive Gaussian Copula ABC , 2019, AISTATS.

[34]  I. Verdinelli,et al.  Shannon Information and Bayesian Design for Prediction in Accelerated Life-Testing , 1993 .

[35]  Fulvio Spezzaferri,et al.  A Predictive Model Selection Criterion , 1984 .

[36]  Christopher C. Drovandi,et al.  Dual purpose Bayesian design for parameter estimation and model discrimination in epidemiology using a synthetic likelihood approach , 2018 .

[37]  Jack P. C. Kleijnen,et al.  Optimization and Sensitivity Analysis of Computer Simulation Models by the Score Function Method , 1996 .

[38]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[39]  P. Freeman,et al.  Likelihood-Free Inference in Cosmology: Potential for the Estimation of Luminosity Functions , 2012 .

[40]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[41]  B. Finkenstädt,et al.  Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study , 2006, Biometrics.

[42]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[43]  Andrew Parker,et al.  Using approximate Bayesian computation to quantify cell–cell adhesion parameters in a cell migratory process , 2016, npj Systems Biology and Applications.

[44]  Yoshua Bengio,et al.  Mutual Information Neural Estimation , 2018, ICML.

[45]  Guannan Zhang,et al.  A Scalable Gradient-Free Method for Bayesian Experimental Design with Implicit Models , 2021, AISTATS.

[46]  James M. McGree,et al.  Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology , 2018, Comput. Stat. Data Anal..

[47]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[48]  Oriol Vinyals,et al.  Representation Learning with Contrastive Predictive Coding , 2018, ArXiv.

[49]  José M. Bernardo,et al.  Bayesian Statistics , 2011, International Encyclopedia of Statistical Science.

[50]  Michael U. Gutmann,et al.  Efficient Bayesian Experimental Design for Implicit Models , 2018, AISTATS.

[51]  James M. McGree,et al.  Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation , 2018, Bayesian Analysis.

[52]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[53]  Jakob H. Macke,et al.  Flexible statistical inference for mechanistic models of neural dynamics , 2017, NIPS.

[54]  Liam Paninski,et al.  Asymptotic Theory of Information-Theoretic Experimental Design , 2005, Neural Computation.

[55]  Aki Vehtari,et al.  Gaussian process modelling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria , 2016, The Annals of Applied Statistics.

[56]  Michael Figurnov,et al.  Monte Carlo Gradient Estimation in Machine Learning , 2019, J. Mach. Learn. Res..

[57]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2020, Proceedings of the National Academy of Sciences.

[58]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .