A sequential algorithm for the universal coding of finite memory sources

The estimation and universal compression of discrete sources are considered, and a sequential algorithm for the universal coding of finite memory sources, attaining asymptotically minimum redundancy, is presented. The algorithm performs an online estimation of the source states and uses an arithmetic code. >

[1]  田辺 行人 J.C.Slater: Quantum Theory of Atomic Structure, Vol.II. Mc Graw-Hill Book Company, Inc., New York, 1960, 439頁, 15×23cm, $ , 1961 .

[2]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[3]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[4]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[5]  Glen G. Langdon,et al.  Universal modeling and coding , 1981, IEEE Trans. Inf. Theory.

[6]  Jorma Rissanen,et al.  Compression of Black-White Images with Arithmetic Coding , 1981, IEEE Trans. Commun..

[7]  Michael B. Pursley,et al.  Efficient universal noiseless source codes , 1981, IEEE Trans. Inf. Theory.

[8]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[9]  Lee D. Davisson,et al.  Minimax noiseless universal coding for Markov sources , 1983, IEEE Trans. Inf. Theory.

[10]  Jorma Rissanen,et al.  Complexity of strings in the class of Markov sources , 1986, IEEE Trans. Inf. Theory.

[11]  Neri Merhav,et al.  On the estimation of the order of a Markov chain and universal data compression , 1989, IEEE Trans. Inf. Theory.

[12]  Michael Gutman,et al.  Asymptotically optimal classification for multiple tests with empirically observed statistics , 1989, IEEE Trans. Inf. Theory.

[13]  Neri Merhav,et al.  Estimating the number of states of a finite-state source , 1992, IEEE Trans. Inf. Theory.