Rapid cortical oscillations and early motor activity in premature human neonate.

Delta-brush is the dominant pattern of rapid oscillatory activity (8-25 Hz) in the human cortex during the third trimester of gestation. Here, we studied the relationship between delta-brushes in the somatosensory cortex and spontaneous movements of premature human neonates of 29-31 weeks postconceptional age using a combination of scalp electroencephalography and monitoring of motor activity. We found that sporadic hand and foot movements heralded the appearance of delta-brushes in the corresponding areas of the cortex (lateral and medial regions of the contralateral central cortex, respectively). Direct hand and foot stimulation also reliably evoked delta-brushes in the same areas. These results suggest that sensory feedback from spontaneous fetal movements triggers delta-brush oscillations in the central cortex in a somatotopic manner. We propose that in the human fetus in utero, before the brain starts to receive elaborated sensory input from the external world, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillations in the developing somatosensory cortex contributing to the formation of cortical body maps.

[1]  C. Dreyfus-Brisac,et al.  [Discontinuous electroencephalograms in the premature newborn and at term. Electro-anatomo-clinical correlations]. , 1971, Revue d'electroencephalographie et de neurophysiologie clinique.

[2]  Milos Judas,et al.  Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants , 2002, The Anatomical record.

[3]  F. Dekker,et al.  Somatosensory evoked potentials in very preterm infants , 2000, Clinical Neurophysiology.

[4]  Yehezkel Ben-Ari,et al.  Retinal Waves Trigger Spindle Bursts in the Neonatal Rat Visual Cortex , 2006, The Journal of Neuroscience.

[5]  tAlejandro Peinado,et al.  t Traveling Slow Waves of Neural Activity: A Novel Form of Network Activity in Developing Neocortex , 2000, The Journal of Neuroscience.

[6]  I. Kostović,et al.  The development of synapses in cerebral cortex of the human fetus. , 1973, Brain research.

[7]  K. Iwase,et al.  Spindle‐like Fast Rhythms in the EEGs of Low‐birthweight Infants , 1972, Developmental medicine and child neurology.

[8]  Hari Eswaran,et al.  Spontaneous neuronal activity in fetuses and newborns , 2004, Experimental Neurology.

[9]  P. Rakic Prenatal genesis of connections subserving ocular dominance in the rhesus monkey , 1976, Nature.

[10]  T. Woolsey,et al.  Somatosensory Cortex: Structural Alterations following Early Injury to Sense Organs , 1973, Science.

[11]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[12]  Anna A Penn,et al.  Thalamic Relay of Spontaneous Retinal Activity Prior to Vision , 1996, Neuron.

[13]  A. H. Parmelee,et al.  A periodic cerebral rhythm in newborn infants. , 1969, Experimental neurology.

[14]  C. Dreyfus-Brisac,et al.  Électroencéphalogrammes discontinus du nouveau-né prématuré et à terme. Corrélations électro-anatomo-cliniques , 1971 .

[15]  William J Moody,et al.  Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. , 2005, Physiological reviews.

[16]  M. Scher,et al.  Prediction of lower developmental performances of healthy neonates by neonatal EEG-sleep measures. , 1996, Pediatric neurology.

[17]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[18]  Michael Weliky,et al.  Relationship of Correlated Spontaneous Activity to Functional Ocular Dominance Columns in the Developing Visual Cortex , 2002, Neuron.

[19]  Michael J. O'Donovan The origin of spontaneous activity in developing networks of the vertebrate nervous system , 1999, Current Opinion in Neurobiology.

[20]  C. Dreyfus-Brisac The electroencephalogram of the premature infant. , 1962, World neurology.

[21]  S Vanhatalo,et al.  DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants , 2002, Clinical Neurophysiology.

[22]  H. Prechtl,et al.  State of the art of a new functional assessment of the young nervous system. An early predictor of cerebral palsy. , 1997, Early human development.

[23]  G. Holmes,et al.  Brain development and generation of brain pathologies. , 2001, International review of neurobiology.

[24]  A. Peinado Immature neocortical neurons exist as extensive syncitial networks linked by dendrodendritic electrical connections. , 2001, Journal of neurophysiology.

[25]  C. Chiu,et al.  Spontaneous Activity in Developing Ferret Visual Cortex In Vivo , 2001, The Journal of Neuroscience.

[26]  G. Cioni,et al.  Preterm and early postterm motor behaviour in low-risk premature infants. , 1990, Early human development.

[27]  G. Holmes,et al.  Prognostic value of background patterns in the neonatal EEG. , 1993, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[28]  L. C. Katz,et al.  Neuronal coupling and uncoupling in the developing nervous system , 1995, Current Opinion in Neurobiology.

[29]  M. Mirmiran,et al.  Development of fetal and neonatal sleep and circadian rhythms. , 2003, Sleep medicine reviews.

[30]  D. Long I of the Vortex: From Neurons to Self , 2002 .

[31]  Erwan Dupont,et al.  Rapid developmental switch in the mechanisms driving early cortical columnar networks , 2006, Nature.

[32]  J. D. de Vries,et al.  The emergence of fetal behaviour. I. Qualitative aspects. , 1982, Early human development.

[33]  D. Feldman,et al.  Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. , 1999, Journal of neurobiology.

[34]  F. Schulte,et al.  Bioelectric Brain Maturation in Small‐for‐Dates Infants , 1969, Developmental medicine and child neurology.

[35]  A. Lux Clinical neurophysiology of infancy, childhood, and adolescence , 2008 .

[36]  Sampsa Vanhatalo,et al.  Slow endogenous activity transients and developmental expression of K+–Cl− cotransporter 2 in the immature human cortex , 2005, The European journal of neuroscience.

[37]  N. Roberton,et al.  The Development of Innate Sleep Rhythms in Short Gestation Infants , 1971, Developmental medicine and child neurology.

[38]  R. J. Ellingson,et al.  Electroencephalograms of normal, full-term newborns immediately after birth with observations on arousal and visual evoked responses. , 1958, Electroencephalography and clinical neurophysiology.

[39]  P. Rakic,et al.  Modulation of neuronal migration by NMDA receptors. , 1993, Science.

[40]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[41]  G. Holmes,et al.  Clinical Neurophysiology of Infancy, Childhood, and Adolescence , 2005 .

[42]  M. Blumberg,et al.  Dual mechanisms of twitching during sleep in neonatal rats. , 1994, Behavioral neuroscience.

[43]  E. Hafez The mammalian fetus: Comparative biology and methodology , 1975 .

[44]  Elina Pihko,et al.  Somatosensory processing in healthy newborns , 2004, Experimental Neurology.

[45]  Yoshio Okada,et al.  Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns , 2004, Clinical Neurophysiology.

[46]  P. Rakic,et al.  The role of receptor/channel activity in neuronal cell migration. , 1995, Journal of neurobiology.

[47]  P. Rakić,et al.  Synaptogenesis in monkey somatosensory cortex. , 1991, Cerebral cortex.

[48]  Marvin D. Nelson,et al.  Somatosensory lateralization in the newborn brain , 2006, NeuroImage.

[49]  M. Eiselt,et al.  Sleep State Organization in Premature Infants of Less Than 35 Weeks' Gestational Age , 1993, Pediatric Research.

[50]  N. Marlow,et al.  Posterior tibial somatosensory evoked potentials in very preterm infants. , 1997, Early human development.

[51]  Reginald G. Bickford,et al.  Atlas of Neonatal Electroencephalography , 1992 .

[52]  B. Macgillivray EEG Technology , 1982 .

[53]  Karel Svoboda,et al.  Precise Development of Functional and Anatomical Columns in the Neocortex , 2004, Neuron.

[54]  Jens Schouenborg,et al.  Spontaneous muscle twitches during sleep guide spinal self-organization , 2003, Nature.

[55]  D. Copenhagen,et al.  Development of Precise Maps in Visual Cortex Requires Patterned Spontaneous Activity in the Retina , 2005, Neuron.

[56]  R. Yuste,et al.  Neuronal domains in developing neocortex: Mechanisms of coactivation , 1995, Neuron.

[57]  Jan G. Nijhuis,et al.  Fetal behavior , 2003, Neurobiology of Aging.

[58]  D. Crowell,et al.  Ontogeny of Arousal , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[59]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[60]  Y. Ben-Ari Developing networks play a similar melody , 2001, Trends in Neurosciences.

[61]  G. Buzsáki,et al.  Early motor activity drives spindle bursts in the developing somatosensory cortex , 2004, Nature.

[62]  K. Fox,et al.  Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex , 2002, Neuroscience.

[63]  J. Eyre,et al.  The Neurophysiological Examination of the Newborn Infant , 1992 .

[64]  M. Scher,et al.  Chapter 2 – Electroencephalography of the Newborn: Normal Features , 2006 .

[65]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .

[66]  F. Torres,et al.  The EEG of the early premature. , 1985, Electroencephalography and clinical neurophysiology.

[67]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[68]  Marla B. Feller,et al.  Spontaneous patterned retinal activity and the refinement of retinal projections , 2005, Progress in Neurobiology.

[69]  L. C. Katz,et al.  Coordination of Neuronal Activity in Developing Visual Cortex by Gap Junction-Mediated Biochemical Communication , 1998, The Journal of Neuroscience.

[70]  O. Garaschuk,et al.  Large-scale oscillatory calcium waves in the immature cortex , 2000, Nature Neuroscience.

[71]  D. Samson-Dollfus,et al.  Électroencéphalographie du nouveau-né prématuré et à terme. Aspects maturatifs et glossaire , 1999, Neurophysiologie Clinique/Clinical Neurophysiology.

[72]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[73]  Chapter 1 – Basic Principles of Electroencephalography , 2006 .

[74]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[75]  N Monod,et al.  The prognostic value of the electroencephalogram in premature infants. , 1981, Electroencephalography and clinical neurophysiology.

[76]  L. Maffei,et al.  Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. , 1988, Science.

[77]  D Samson-Dollfus,et al.  [Electroencephalography of the premature and term newborn. Maturational aspects and glossary]. , 1999, Neurophysiologie clinique = Clinical neurophysiology.

[78]  P. Rakić,et al.  Development of Layer I Neurons in the Primate Cerebral Cortex , 2001, The Journal of Neuroscience.

[79]  G Cioni,et al.  Background EEG activity in preterm infants: correlation of outcome with selected maturational features. , 1994, Electroencephalography and clinical neurophysiology.

[80]  Heiko J. Luhmann,et al.  Early patterns of electrical activity in the developing cerebral cortex of humans and rodents , 2006, Trends in Neurosciences.

[81]  J. Ogden The Mammalian Fetus. Comparative Biology and Methodology , 1977, The Yale Journal of Biology and Medicine.

[82]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.