Optimistic Concurrency Control for Distributed Unsupervised Learning
暂无分享,去创建一个
Michael I. Jordan | Joseph Gonzalez | Stefanie Jegelka | Tamara Broderick | Xinghao Pan | Tamara Broderick | Xinghao Pan | Joseph E. Gonzalez | S. Jegelka
[1] J. T. Robinson,et al. On optimistic methods for concurrency control , 1979, TODS.
[2] Leslie G. Valiant,et al. A bridging model for parallel computation , 1990, CACM.
[3] Inderjit S. Dhillon,et al. A Data-Clustering Algorithm on Distributed Memory Multiprocessors , 1999, Large-Scale Parallel Data Mining.
[4] Adam Meyerson,et al. Online facility location , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[5] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[6] Rina Panigrahy,et al. Better streaming algorithms for clustering problems , 2003, STOC '03.
[7] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[8] Abhinandan Das,et al. Google news personalization: scalable online collaborative filtering , 2007, WWW '07.
[9] Max Welling,et al. Distributed Inference for Latent Dirichlet Allocation , 2007, NIPS.
[10] Nir Ailon,et al. Streaming k-means approximation , 2009, NIPS.
[11] Zoubin Ghahramani,et al. Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process , 2009, NIPS.
[12] Scott Shenker,et al. Spark: Cluster Computing with Working Sets , 2010, HotCloud.
[13] Alexander T. Ihler,et al. Multicore Gibbs Sampling in Dense, Unstructured Graphs , 2011, AISTATS.
[14] Andreas Krause,et al. Scalable Training of Mixture Models via Coresets , 2011, NIPS.
[15] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[16] Benjamin Moseley,et al. Fast clustering using MapReduce , 2011, KDD.
[17] Arthur Gretton,et al. Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees , 2011, AISTATS.
[18] Adam Meyerson,et al. Fast and Accurate k-means For Large Datasets , 2011, NIPS.
[19] Sergei Vassilvitskii,et al. Scalable K-Means++ , 2012, Proc. VLDB Endow..
[20] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[21] Alexander J. Smola,et al. Scalable inference in latent variable models , 2012, WSDM '12.
[22] Michael I. Jordan,et al. Revisiting k-means: New Algorithms via Bayesian Nonparametrics , 2011, ICML.
[23] Michael I. Jordan,et al. Stick-Breaking Beta Processes and the Poisson Process , 2012, AISTATS.
[24] Ryan P. Adams,et al. ClusterCluster: Parallel Markov Chain Monte Carlo for Dirichlet Process Mixtures , 2013, ArXiv.
[25] Michael I. Jordan,et al. MAD-Bayes: MAP-based Asymptotic Derivations from Bayes , 2012, ICML.