Exploring the Shape Influence on Melting Temperature, Enthalpy, and Solubility of Organic Drug Nanocrystals by a Thermodynamic Model

This paper focuses on a thermodynamic model built to predict the reduction of organic drug melting temperature and enthalpy with nanocrystal size decrease. Indeed, this valuable information enables us to evaluate the increase of drug solubility, an aspect of paramount importance for poorly water-soluble organic drugs since a solubility increase is reflected in a bioavailability enhancement. In particular, the model considers the effect of nanocrystals shape (spherical, cylindrical, and parallelepiped-shaped) and morphology (from platelet to needle nanocrystals) on the melting temperature and enthalpy reduction with crystal size decrease. Nimesulide, a typical nonsteroidal and poorly water-soluble drug with anti-inflammatory action, has been chosen as a model drug to test model reliability. Model outcomes suggest that the reduction of melting temperature and enthalpy mainly depends on the ratio between crystals surface area and volume, i.e., on the ratio between the number of surface and bulk molecules con...

[1]  A. Myerson,et al.  Two-Stage Crystallizer Design for High Loading of Poorly Water-Soluble Pharmaceuticals in Porous Silica Matrices , 2017 .

[2]  B. Trout,et al.  Core–Shell Composite Hydrogels for Controlled Nanocrystal Formation and Release of Hydrophobic Active Pharmaceutical Ingredients , 2016, Advanced healthcare materials.

[3]  B. Perissutti,et al.  Nanostructured Drugs Embedded into a Polymeric Matrix: Vinpocetine/PVP Hybrids Investigated by Debye Function Analysis. , 2016, Molecular pharmaceutics.

[4]  W. Jones,et al.  Mechanochemical Synthesis of Multicomponent Crystals: One Liquid for One Polymorph? A Myth to Dispel , 2016 .

[5]  I. Bruno,et al.  The Cambridge Structural Database , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[6]  M. Beiner,et al.  Pharmaceutical nanocrystals confined in porous host systems--interfacial effects and amorphous interphases. , 2016, Chemical communications.

[7]  B. Trout,et al.  A Process for the Formation of Nanocrystals of Active Pharmaceutical Ingredients with Poor Aqueous Solubility in a Nanoporous Substrate , 2015 .

[8]  B. Perissutti,et al.  Drug Nanocrystals: Theoretical Background of Solubility Increase and Dissolution Rate Enhancement , 2014 .

[9]  Allan S. Myerson,et al.  Biocompatible Alginate Microgel Particles as Heteronucleants and Encapsulating Vehicles for Hydrophilic and Hydrophobic Drugs , 2014 .

[10]  M. Beiner,et al.  Morphology of Porous Hosts Directs Preferred Polymorph Formation and Influences Kinetics of Solid/Solid Transitions of Confined Pharmaceuticals , 2014 .

[11]  Dinesh Kumar,et al.  Designed Isomorphism of Nifedipine: A Joint Experimental and Molecular Simulation Study with Screened Solvents and Antisolvents , 2014 .

[12]  C. A. Ward,et al.  Contact angles and surface properties of nanoporous materials. , 2013, Journal of colloid and interface science.

[13]  B. Perissutti,et al.  Reduction of melting temperature and enthalpy of drug crystals: theoretical aspects. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  Kyusoon Shin,et al.  Estimating the solubility of amorphous ibuprofen using nanoporous anodic aluminum oxide as a solidification template. , 2013, Journal of nanoscience and nanotechnology.

[15]  Beatrice Perissutti,et al.  Mechanochemically induced disordered structures of vincamine: the different mediation of two cross-linked polymers. , 2012, International journal of pharmaceutics.

[16]  Patrick Marroum,et al.  Mechanistic analysis of solute transport in an in vitro physiological two‐phase dissolution apparatus , 2012 .

[17]  Francis S. Romanski,et al.  Atomistic simulations of aqueous griseofulvin crystals in the presence of individual and multiple additives , 2012 .

[18]  K. Nanda,et al.  Thermodynamic Models for the Size-dependent Melting of Nanoparticles: Different Hypotheses , 2012 .

[19]  I. Colombo,et al.  Theoretical and experimental analysis of drug release from an ensemble of polymeric particles containing amorphous and nano-crystalline drug , 2012 .

[20]  Benjamin D. Hamilton,et al.  Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. , 2012, Accounts of chemical research.

[21]  M. N. Magomedov Melting heat of a nanoparticle , 2011 .

[22]  B. Sarma,et al.  Phase transformation in conformational polymorphs of nimesulide. , 2011, Journal of pharmaceutical sciences.

[23]  E. Franceschinis,et al.  Multidisciplinary approach on characterizing a mechanochemically activated composite of vinpocetine and crospovidone. , 2011, Journal of pharmaceutical sciences.

[24]  V. Lubashenko Size-dependent melting of nanocrystals: a self-consistent statistical approach , 2010 .

[25]  Ravi M Shanker,et al.  Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. , 2010, Journal of pharmaceutical sciences.

[26]  E. R. Cooper,et al.  Nanoparticles: A personal experience for formulating poorly water soluble drugs. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[27]  B. Perissutti,et al.  Solid state mechanochemical activation of Silybum marianum dry extract with betacyclodextrins: Characterization and bioavailability of the coground systems. , 2009, Journal of pharmaceutical sciences.

[28]  I. Colombo,et al.  Drug mechanochemical activation. , 2009, Journal of pharmaceutical sciences.

[29]  K. Nanda Size-dependent melting of nanoparticles: Hundred years of thermodynamic model , 2009 .

[30]  V. Samsonov,et al.  On the size dependence of the melting temperature of nanoparticles , 2008 .

[31]  K. Nanda,et al.  Thermodynamic model for the size-dependent melting of prism-shaped nanoparticles , 2008 .

[32]  M. Beiner,et al.  Stabilization of the amorphous state of pharmaceuticals in nanopores , 2008 .

[33]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[34]  M. Beiner,et al.  Manipulating the crystalline state of pharmaceuticals by nanoconfinement. , 2007, Nano letters.

[35]  Werner Kaminsky,et al.  From CIF to virtual morphology using the WinXMorph program , 2007 .

[36]  Q. Jiang,et al.  The solid–liquid interface energy of organic crystals , 2007 .

[37]  Romano Lapasin,et al.  Understanding Drug Release and Absorption Mechanisms: A Physical and Mathematical Approach , 2006 .

[38]  Deepak Bahl,et al.  Amorphization of Indomethacin by Co-Grinding with Neusilin US2: Amorphization Kinetics, Physical Stability and Mechanism , 2006, Pharmaceutical Research.

[39]  K. Wilson,et al.  Anisotropic surface energetics and wettability of macroscopic form I paracetamol crystals. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[40]  I. Colombo,et al.  Microstructure and morphology of nimesulide/crospovidone nanocomposites by Raman and electron microscopies , 2005 .

[41]  M. Ward,et al.  Thermotropic properties of organic nanocrystals embedded in ultrasmall crystallization chambers. , 2005, The journal of physical chemistry. B.

[42]  I. Colombo,et al.  Melting of Nanostructured Drugs Embedded into a Polymeric Matrix , 2004 .

[43]  V. Samsonov,et al.  Size dependence of the surface tension and the problem of Gibbs thermodynamics extension to nanosystems , 2004 .

[44]  M. N. Magomedov Dependence of the surface energy on the size and shape of a nanocrystal , 2004 .

[45]  D. Voinovich,et al.  In vitro nimesulide absorption from different formulations. , 2004, Journal of pharmaceutical sciences.

[46]  M. Ward,et al.  Polymorph selectivity under nanoscopic confinement. , 2004, Journal of the American Chemical Society.

[47]  B. J. McCoy,et al.  Growth and Ripening Kinetics of Crystalline Polymorphs , 2003 .

[48]  C. Nyström,et al.  Apparent Solubility of Drugs in Partially Crystalline Systems , 2003, Drug development and industrial pharmacy.

[49]  M. Grassi,et al.  Modelling partitioning of sparingly soluble drugs in a two-phase liquid system. , 2002, International journal of pharmaceutics.

[50]  G. Zografi,et al.  Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. , 2002, Journal of pharmaceutical sciences.

[51]  T. Wisleder,et al.  Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements , 2000 .

[52]  Arifin Musthafa Article , 2000 .

[53]  I. Colombo,et al.  Drug release from an ensemble of swellable crosslinked polymer particles. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[54]  Q. Jiang,et al.  Melting thermodynamics of organic nanocrystals , 1999 .

[55]  A. Cortesi,et al.  Sorption of CO2 in biocompatible polymers: experimental data and qualitative interpretation , 1999 .

[56]  Hang Shi,et al.  FREE ENERGY OF CRYSTAL-LIQUID INTERFACE , 1999 .

[57]  R. Rowell,et al.  Physical Chemistry of Surfaces, 6th ed. , 1998 .

[58]  J. Crison,et al.  A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability , 1995, Pharmaceutical Research.

[59]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[60]  Jean W. Tom,et al.  Application of supercritical fluids for the production of sustained delivery devices , 1993 .

[61]  A. Beezer,et al.  The relationship between particle size and solubility , 1992 .

[62]  P. Taylor,et al.  Physical chemistry of surfaces , 1991 .

[63]  Jean-Claude Tolédano,et al.  The Landau theory of phase transitions : application to structural, incommensurate, magnetic, and liquid crystal systems , 1987 .

[64]  I. Colombo,et al.  Influence of polymer characteristics on drug loading into crospovidone , 1986 .

[65]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[66]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[67]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[68]  P. Pawlow Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers , 1909 .

[69]  A. Umantsev Landau Theory of Phase Transitions , 2012 .

[70]  M. Brun,et al.  Changement d’état liquide [math] solide dans les milieux poreux - II. — Étude théorique de la solidification d’un condensat capillaire , 1973 .

[71]  Peter Laurie Drugs , 1967, Mental Health.

[72]  The Collected Works of J Willard Gibbs , 1929, Nature.