Single Commodity-Flow Algorithms for Lifts of Graphic and CoGraphic Matroids

Consider a binary matroid $M$ given by its matrix representation. We show that if $M$ is a lift of a graphic or cographic matroid, then in polynomial time (in the size of $M$ and encoding length of the weights) we can either solve the single commodity-flow problem for $M$ or find an obstruction for which the max-flow min-cut relation does not hold. The key tool is an algorithmic version of Lehman's theorem for set covering polyhedra. This tool relies on the ellipsoid method.

[1]  Paul D. Seymour,et al.  The matroids with the max-flow min-cut property , 1977, J. Comb. Theory B.

[2]  Paul D. Seymour,et al.  Matroids and Multicommodity Flows , 1981, Eur. J. Comb..

[3]  Bertrand Guenin A Short Proof of Seymour's Characterization of the Matroids with the Max-Flow Min-Cut Property , 2002, IPCO.

[4]  Bruce A. Reed,et al.  The Graph Minor Algorithm with Parity Conditions , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[5]  Klaus Truemper,et al.  Max-Flow Min-Cut Matroids: Polynomial Testing and Polynomial Algorithms for Maximum Flow and Shortest Routes , 1987, Math. Oper. Res..

[6]  Alon Itai,et al.  On the complexity of time table and multi-commodity flow problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[7]  James F. Geelen,et al.  Packing Odd Circuits in Eulerian Graphs , 2002, J. Comb. Theory, Ser. B.

[8]  Robin Thomas,et al.  Tutte's Edge-Colouring Conjecture , 1997, J. Comb. Theory, Ser. B.

[9]  Michel X. Goemans,et al.  Minimizing submodular functions over families of sets , 1995, Comb..

[10]  András A. Benczúr,et al.  Fast Algorithms for Even/Odd Minimum Cuts and Generalizations , 2000, ESA.

[11]  W. T. Tutte On the algebraic theory of graph colorings , 1966 .

[12]  Alfred Lehman,et al.  On the width—length inequality , 1979, Math. Program..

[13]  Martin Grötschel,et al.  Weakly bipartite graphs and the Max-cut problem , 1981, Oper. Res. Lett..

[14]  Bertrand Guenin,et al.  Integral Polyhedra Related to Even Cycle and Even Cut Matroids , 2001, IPCO.

[15]  Gérard Cornuéjols,et al.  Ideal Binary Clutters, Connectivity, and a Conjecture of Seymour , 2002, SIAM J. Discret. Math..

[16]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[17]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[18]  J. Oxley Matroid Theory (Oxford Graduate Texts in Mathematics) , 2006 .

[19]  Alfred Lehman,et al.  The Width-Length Inequality and Degenerate Projective Planes , 1990, Polyhedral Combinatorics.

[20]  H. Ryser,et al.  COMBINATORIAL DESIGNS AND RELATED SYSTEMS , 1969 .

[21]  Tait XXIII.—Note on a Theorem in Geometry of Position. , 1880 .

[22]  R. J. Duffin,et al.  The extremal length of a network , 1962 .

[23]  Irene Pivotto,et al.  Even Cycle and Even Cut Matroids , 2011 .

[24]  Robert E. Bixby,et al.  ℓ-matrices and a Characterization of Binary Matroids , 1974, Discret. Math..

[25]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[26]  Alexander Schrijver A Short Proof of Guenin's Characterization of Weakly Bipartite Graphs , 2002, J. Comb. Theory, Ser. B.

[27]  G. Cornuéjols,et al.  Combinatorial optimization : packing and covering , 2001 .

[28]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[29]  J. Geelen,et al.  TOWARDS A MATROID-MINOR STRUCTURE THEORY , 2007 .

[30]  Bertrand Guenin A Characterization of Weakly Bipartite Graphs , 2000, Electron. Notes Discret. Math..