Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids.

Glass transition temperature and fragility are two important properties derived from the temperature dependence of the shear viscosity of glass-forming melts. While direct calculation of these properties from atomistic simulations is currently infeasible, we have developed a new topological modeling approach that enables accurate prediction of the scaling of both glass transition temperature and fragility with composition. A key feature of our approach is the incorporation of temperature-dependent constraints that become rigid as a liquid is cooled. Using this approach, we derive analytical expressions for the composition (x) dependence of glass transition temperature, T(g)(x), and fragility, m(x), in binary alkali borate systems. Results for sodium borate and lithium borate systems are in agreement with published values of T(g)(x) and m(x). Our modeling approach reveals a natural explanation for the presence of the constant T(g) regime observed in alkali borate systems.

[1]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[2]  L. Du,et al.  The effect of fictive temperature on the structure of E-glass: A high resolution, multinuclear NMR study , 2005 .

[3]  Molecular Dynamic Calculations of A Sodium Borosilicate Glass Structure , 1981 .

[4]  I. Avramov Viscosity in disordered media , 2005 .

[5]  A. Cormack,et al.  The structure of sodium silicate glass , 1990 .

[6]  C. Angell,et al.  Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg , 1982 .

[7]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[8]  C. Angell Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems☆ , 1991 .

[9]  Energy landscape and rigidity. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  J. Mauro,et al.  Continuously broken ergodicity. , 2007, The Journal of chemical physics.

[11]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[12]  J. Mauro,et al.  The laboratory glass transition. , 2007, The Journal of chemical physics.

[13]  J. C. Phillips,et al.  Rings and rigidity transitions in network glasses , 2003 .

[14]  G. Chryssikos,et al.  Lithium borate glasses: a quantitative study of strength and fragility , 1994 .

[15]  J. Zarzycki,et al.  Glasses and the vitreous state , 1991 .

[16]  D. Neuville,et al.  Temperature‐Induced Structural Modifications Between Alkali Borate Glasses and Melts , 2006 .

[17]  G. Calas,et al.  Temperature-induced boron coordination change in alkali borate glasses and melts , 2003 .

[18]  Arun K. Varshneya,et al.  MICROHARDNESS, SURFACE TOUGHNESS AND AVERAGE COORDINATION NUMBER IN CHALCOGENIDE GLASSES , 1990 .

[19]  C. Angell Spectroscopy simulation and scattering, and the medium range order problem in glass , 1985 .

[20]  Cai,et al.  Floppy modes in network glasses. , 1989, Physical review. B, Condensed matter.

[21]  A. Varshneya,et al.  Molar volume and elastic properties of multicomponent chalcogenide glasses , 1991 .

[22]  John C. Mauro,et al.  Advancing glasses through fundamental research , 2009 .

[23]  W. White,et al.  Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates , 1975 .

[24]  R. Araujo Statistical mechanical model of boron coordination , 1980 .

[25]  A. Varshneya,et al.  Microhardness and indentation toughness versus average coordination number in isostructural chalcogenide glass systems , 1991 .

[26]  C. Angell,et al.  Nonexponential relaxations in strong and fragile glass formers , 1993 .

[27]  Peter G Wolynes,et al.  Theory of structural glasses and supercooled liquids. , 2007, Annual review of physical chemistry.

[28]  A. Varshneya Some comments on physical properties of chalcogenide glasses , 2000 .

[29]  J. Mauro,et al.  Selenium glass transition : A model based on the enthalpy landscape approach and nonequilibrium statistical mechanics , 2007 .

[30]  Ulf R. Pedersen,et al.  Feasibility of a single-parameter description of equilibrium viscous liquid dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  A. Varshneya,et al.  Viscosity of chalcogenide glass-forming liquids: an anomaly in the ‘strong’ and ‘fragile’ classification , 1996 .

[32]  A. Varshneya,et al.  Configurational arrangements in chalcogenide glasses: A new perspective on Phillips' constraint theory , 1995 .

[33]  P. Gupta Rigidity, Connectivity, and Glass-Forming Ability , 1993 .

[34]  Lindsay,et al.  Rigidity percolation in the germanium-arsenic-selenium alloy system. , 1986, Physical review letters.

[35]  C. Angell Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit , 1988 .

[36]  A. Varshneya,et al.  Gibbs-DiMarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses , 1991 .

[37]  P. Boolchand,et al.  Molecular phase separation in stoichiometric chalcogenide glasses , 1985 .

[38]  P. Richet,et al.  Silicate melt structural relaxation: rheology, kinetics, and Adam-Gibbs theory , 1996 .

[39]  Cornelius T. Moynihan,et al.  Correlation between the Width of the Glass Transition Region and the Temperature Dependence of the Viscosity of High‐Tg Glasses , 1993 .

[40]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[41]  P. J. Bray Structural models for borate glasses , 1985 .

[42]  I. Polyakova Alkali borosilicate systems: phase diagrams and properties of glasses , 2000 .

[43]  A. Cormack,et al.  Molecular dynamics simulations of borate glasses , 2000 .

[44]  T. Soules A molecular dynamic calculation of the structure of sodium silicate glasses , 1979 .

[45]  Boolchand,et al.  Rigidity percolation and molecular clustering in network glasses. , 1986, Physical review letters.

[46]  A. Varshneya,et al.  Structure-property inter-relations in chalcogenide glasses and their practical implications , 1997 .

[47]  M. Thorpe Bulk and surface floppy modes , 1995 .

[48]  Griffiths,et al.  Coordination-number-induced morphological structural transition in a network glass. , 1987, Physical review. B, Condensed matter.

[49]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[50]  D. Miracle,et al.  A topological basis for bulk glass formation , 2007 .

[51]  O. Mazurin Glass properties: compilation, evaluation, and prediction , 2005 .

[52]  J. C. Phillips,et al.  Constraint theory, vector percolation and glass formation , 1985 .

[53]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[54]  M. Thorpe,et al.  Rigidity theory and applications , 2002 .

[55]  A. Varshneya,et al.  Molecular dynamics simulation of alkali‐silicate glass structures , 1987 .

[56]  J. Mauro,et al.  Modeling of Rigidity Percolation and Incipient Plasticity in Germanium–Selenium Glasses , 2007 .

[57]  Alexander Fluegel,et al.  Global Model for Calculating Room‐Temperature Glass Density from the Composition , 2007 .

[58]  M. Yamane,et al.  Structural investigation of sodium borate glasses and melts by Raman spectroscopy. III. Relation between the rearrangement of super-structures and the properties of glass , 2003 .

[59]  Donald R Uhlmann,et al.  Glass--science and technology , 1980 .

[60]  Ranko Richert,et al.  Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy , 1998 .

[61]  G. Naumis Glass transition phenomenology and flexibility: An approach using the energy landscape formalism , 2006 .

[62]  P. B. Macedo,et al.  Effects of a Distribution of Volume Relaxation Times in the Annealing of BSC Glass. , 1967, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[63]  G. Biroli,et al.  On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. , 2004, Journal of Chemical Physics.

[64]  R. Araujo Statistical mechanics of chemical disorder: application to alkali borate glasses , 1983 .

[65]  A. Bakai,et al.  Molecular dynamics simulation of viscosity in supercooled liquid and glassy AgCu alloy , 2007 .

[66]  Thorpe,et al.  Elastic properties of glasses. , 1985, Physical review letters.

[67]  S. Kojima,et al.  Anharmonicity and fragility in lithium borate glasses , 2002 .

[68]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[69]  G. Scherer Viscous Sintering of a Bimodal Pore‐Size Distribution , 1984 .

[70]  Matthieu Micoulaut,et al.  Glass structure, rigidity transitions and the intermediate phase in the Ge–As–Se ternary , 2000 .

[71]  J. Simmons,et al.  Analysis of Low Temperature Viscosity Data for Three NBS Standard Glasses. , 1974, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[72]  J. Mauro,et al.  Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints. , 2009, The Journal of chemical physics.

[73]  D. Uhlmann,et al.  Subliquidus Immiscibility in Binary Alkali Borates , 1968 .

[74]  J. Mauro,et al.  Impact of fragility on enthalpy relaxation in glass. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  P.Boolchand,et al.  Raman scattering as a probe of intermediate phases in glassy networks , 2007, 0709.4441.

[76]  J. Mauro,et al.  Two factors governing fragility: stretching exponent and configurational entropy. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  G. Ruocco,et al.  Fragility and glassy dynamics of 2Ca(NO3)2.3KNO3 under pressure: molecular dynamics simulations. , 2008, The Journal of chemical physics.

[78]  R. Mozzi,et al.  The structure of vitreous boron oxide , 1970 .

[79]  R. Kerner A model for formation and structural properties of alkali borate glasses , 1991 .

[80]  A. R. Cooper,et al.  Topologically disordered networks of rigid polytopes , 1990 .

[81]  Mark R. Johnson,et al.  A molecular dynamics study of the role of the cation in modifying the structure of alkali borate glasses , 2008 .