Induction of autophagy and inhibition of melanoma growth in vitro and in vivo by hyperactivation of oncogenic BRAF.

[1]  C. Schmitt,et al.  Oncogene-induced senescence: putting the brakes on tumor development. , 2006, Cancer research.

[2]  R. Deberardinis,et al.  Autophagy in metazoans: cell survival in the land of plenty , 2005, Nature Reviews Molecular Cell Biology.

[3]  C. Springer,et al.  V599EB-RAF is an Oncogene in Melanocytes , 2004, Cancer Research.

[4]  E. Morselli,et al.  Life, death and burial: multifaceted impact of autophagy. , 2008, Biochemical Society transactions.

[5]  G. Evan,et al.  Distinct thresholds govern Myc's biological output in vivo. , 2008, Cancer cell.

[6]  Michael R. Green,et al.  Oncogenic BRAF Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein IGFBP7 , 2008, Cell.

[7]  P. Uribe,et al.  Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. , 2006, The Journal of investigative dermatology.

[8]  S. Levison,et al.  Neural Stem Cells in the Subventricular Zone are Resilient to Hypoxia/Ischemia whereas Progenitors are Vulnerable , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[10]  Soldano Ferrone,et al.  Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. , 2006, Cancer research.

[11]  M. Jäättelä,et al.  Autophagy: An emerging target for cancer therapy , 2008, Autophagy.

[12]  P. Sutphin,et al.  A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. , 2008, Cancer cell.

[13]  David P. Davis,et al.  Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. , 2006, Cancer research.

[14]  E. Morselli,et al.  Control of autophagy by oncogenes and tumor suppressor genes , 2009, Cell Death and Differentiation.

[15]  R L Kassel,et al.  An endotoxin-induced serum factor that causes necrosis of tumors. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Yonghong Xiao,et al.  GOLPH3 modulates mTOR signaling and rapamycin sensitivity in cancer , 2009, Nature.

[17]  P. Codogno,et al.  Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells* , 2000, The Journal of Biological Chemistry.

[18]  L. Zon,et al.  BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma , 2005, Current Biology.

[19]  Lewis A. Chodosh,et al.  Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis , 2007, Nature Cell Biology.

[20]  D. Tuveson,et al.  C-Raf inhibits MAPK activation and transformation by B-Raf(V600E). , 2009, Molecular cell.

[21]  Baolin Wu,et al.  Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. , 2008, Cancer cell.

[22]  M. Gordon In Melanoma, RAS Mutations Are Accompanied by Switching Signaling from BRAF to CRAF and Disrupted Cyclic AMP Signaling , 2008 .

[23]  W. White,et al.  Expression of microtubule-associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma. , 2001, The American journal of pathology.

[24]  F. Lozupone,et al.  Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma , 2006, Oncogene.

[25]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[26]  Timothy Cash,et al.  Regulation of B-Raf Kinase Activity by Tuberin and Rheb Is Mammalian Target of Rapamycin (mTOR)-independent* , 2004, Journal of Biological Chemistry.

[27]  D. Peeper,et al.  Cellular senescence in vivo: a barrier to tumorigenesis. , 2008, Current opinion in cell biology.

[28]  M. Serrano,et al.  A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. , 2007, Genes & development.

[29]  Joseph Avruch,et al.  Rheb Binds and Regulates the mTOR Kinase , 2005, Current Biology.

[30]  S. Pattingre,et al.  Amino Acids Interfere with the ERK1/2-dependent Control of Macroautophagy by Controlling the Activation of Raf-1 in Human Colon Cancer HT-29 Cells* , 2003, The Journal of Biological Chemistry.

[31]  Govind Bhagat,et al.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. , 2003, The Journal of clinical investigation.

[32]  Gerard Manning,et al.  TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. , 2009, Cancer research.

[33]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[34]  C. Johannessen,et al.  A negative feedback signaling network underlies oncogene-induced senescence. , 2006, Cancer cell.

[35]  J. J. van den Oord,et al.  Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. , 2001, The Journal of investigative dermatology.

[36]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[37]  S. Furuta,et al.  Ras is involved in the negative control of autophagy through the class I PI3-kinase , 2004, Oncogene.

[38]  T. Pier,et al.  Protein Expression of Matriptase and its Cognate Inhibitor HAI-1 in Human Prostate Cancer: A Tissue Microarray and Automated Quantitative Analysis , 2009, Applied immunohistochemistry & molecular morphology : AIMM.

[39]  M. Ratain,et al.  Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis , 2006, British Journal of Cancer.

[40]  Todd R. Golub,et al.  BRAF mutation predicts sensitivity to MEK inhibition , 2006, Nature.

[41]  K. Guan,et al.  Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? , 2006, Oncogene.

[42]  Hong Wu,et al.  mTOR is activated in the majority of malignant melanomas. , 2008, The Journal of investigative dermatology.