Nonlinear Prices in Nonconvex Economies with Classical Pareto and Strong Pareto Optimal Allocations

The paper is devoted to applications of modern tools of variational analysis to equilibrium models of welfare economics involving generally nonconvex economies with infinite-dimensional commodity spaces. The main results relate to the so-called generalized/extended second welfare theorem ensuring an equilibrium price support at Pareto optimal allocations. Based on advanced tools of variational analysis and generalized differentiation, we establish refined results of this type with the novel usage of nonlinear prices at the three types to optimal allocations: weak Pareto, Pareto, and strong Pareto. We pay a special attention to strong Pareto optimal allocations in economies with ordering commodity spaces showing that enhanced results for them do not require, in contrast to the classical types of weak Pareto and Pareto optimality, any net demand qualification conditions.

[1]  K. Arrow An Extension of the Basic Theorems of Classical Welfare Economics , 1951 .

[2]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[3]  P. Samuelson The Pure Theory of Public Expanditure , 1954 .

[4]  B. Mordukhovich Maximum principle in the problem of time optimal response with nonsmooth constraints PMM vol. 40, n≗ 6, 1976, pp. 1014-1023 , 1976 .

[5]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[6]  Bernard Cornet Marginal cost pricing and Pareto optimality , 1988 .

[7]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[8]  M. Ali Khan,et al.  Ioffe's normal cone and the foundations of welfare economics: The infinite dimensional theory , 1991 .

[9]  Positive operators on Krein spaces , 1992 .

[10]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[11]  Jonathan M. Borwein,et al.  A nonconvex separation property in Banach spaces , 1998, Math. Methods Oper. Res..

[12]  Boris S. Mordukhovich,et al.  Nonsmooth Characterizations of Asplund Spaces and Smooth Variational Principles , 1998 .

[13]  M. Ali Khan The Mordukhovich Normal Cone and the Foundations of Welfare Economics , 1999 .

[14]  Boris S. Mordukhovich,et al.  An abstract extremal principle with applications to welfare economics , 2000 .

[15]  Boris S. Mordukhovich,et al.  Pareto Optimality in Nonconvex Economies with Infinite-dimensional Commodity Spaces , 2001, J. Glob. Optim..

[16]  Boris S. Mordukhovich,et al.  The extremal principle and its applications to optimization and economics , 2001 .

[17]  Nicholas C. Yannelis,et al.  A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices , 2001, J. Econ. Theory.

[18]  Boris S. Mordukhovich,et al.  Sequential normal compactness versus topological normal compactness in variational analysis , 2003 .

[19]  Qiji J. Zhu,et al.  Nonconvex Separation Theorem for Multifunctions, Subdifferential Calculus and Applications , 2004 .

[20]  Charalambos D. Aliprantis,et al.  Non-marketed options, non-existence of equilibria, and non-linear prices , 2004, J. Econ. Theory.

[21]  Roger J.-B. Wets,et al.  A Variational Inequality Scheme for Determining an Economic Equilibrium of Classical or Extended Type , 2005 .

[22]  Charalambos D. Aliprantis,et al.  Linear and non-linear price decentralization , 2005, Journal of Economics Theory.

[23]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[24]  Alejandro Jofré,et al.  A nonconvex separation property and some applications , 2006, Math. Program..

[25]  Alejandro Jofré,et al.  Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies , 2006 .