Characterising the robustness of coupled power-law networks

Abstract Many networks exhibit a power-law configuration, where the number of connections each node has follows a power-law distribution, including the Internet, terrorist cells, species relationships and infrastructure. Given the prevalence of power-law networks, studying the effects of disruptions on their performance is of interest. Previous work has investigated the influence of network topology on the effects of random node failures for independent networks. Many networks depend on others to function and thus, exploring the influence of network topology on the effects of failures in interdependent networks is of interest. The present paper extends the previous work to coupled power-law network systems. For a set of randomly generated coupled systems, each containing two networks, we investigate the significant topological factors for different dependency types. Failures in the coupled networks are simulated and the effects on the system performance are analysed by performing a beta regression. The results are consistent across the dependency types, with the most influential topological factors being mean nodal degree and factors relating to the dependency type. The results are also compared with those of the independent networks and their potential relevance to the design of interdependent networks is indicated, for example, their use within an infrastructure setting.

[1]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[2]  George Pavlou,et al.  Resilience of interdependent communication and power distribution networks against cascading failures , 2016, 2016 IFIP Networking Conference (IFIP Networking) and Workshops.

[3]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[4]  Réka Albert,et al.  Structural vulnerability of the North American power grid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Havlin,et al.  Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. , 2010, Physical review letters.

[6]  Devika Subramanian,et al.  Performance assessment of topologically diverse power systems subjected to hurricane events , 2010, Reliab. Eng. Syst. Saf..

[7]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[8]  Jinde Cao,et al.  Cascade of failures in interdependent networks coupled by different type networks , 2015 .

[9]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[10]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[11]  M. A. S. Monfared,et al.  Comparing topological and reliability-based vulnerability analysis of Iran power transmission network , 2014 .

[12]  Min Ouyang,et al.  Review on modeling and simulation of interdependent critical infrastructure systems , 2014, Reliab. Eng. Syst. Saf..

[13]  Amanda D. Lothes,et al.  Research Database of Water Distribution System Models , 2014 .

[14]  Jim W. Hall,et al.  System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures , 2017, Reliab. Eng. Syst. Saf..

[15]  Jim W. Hall,et al.  Preserving Key Topological and Structural Features in the Synthesis of Multilevel Electricity Networks for Modeling of Resilience and Risk , 2018 .

[16]  Seth Bullock,et al.  Interdependent networks: vulnerability analysis and strategies to limit cascading failure , 2014 .

[17]  James P. Peerenboom,et al.  Identifying, understanding, and analyzing critical infrastructure interdependencies , 2001 .

[18]  Liang Tang,et al.  Complex interdependent supply chain networks: Cascading failure and robustness , 2016 .

[19]  Min Ouyang,et al.  A methodological approach to analyze vulnerability of interdependent infrastructures , 2009, Simul. Model. Pract. Theory.

[20]  Zhe Chen,et al.  Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems , 2018, IEEE Transactions on Sustainable Energy.

[21]  Avi Ostfeld,et al.  The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms , 2008 .

[22]  Guido Caldarelli,et al.  Cascades in interdependent flow networks , 2015, ArXiv.

[23]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[24]  Seung-Yong Ok,et al.  Multi-scale system reliability analysis of lifeline networks under earthquake hazards , 2009 .

[25]  Peng Zhang,et al.  Cascading failures in interconnected networks with dynamical redistribution of loads , 2015 .

[26]  Harry Eugene Stanley,et al.  Robustness of a Network of Networks , 2010, Physical review letters.

[27]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[28]  Marcelo Masera,et al.  Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure , 2015, Reliab. Eng. Syst. Saf..

[29]  Jonas Johansson,et al.  Topological Performance Measures as Surrogates for Physical Flow Models for Risk and Vulnerability Analysis for Electric Power Systems , 2013, Risk analysis : an official publication of the Society for Risk Analysis.

[30]  Istvan Lippai Colorado Springs Utilities Case Study: Water System Calibration / Optimization , 2005 .

[31]  Barry J. Goodno,et al.  Seismic response of critical interdependent networks , 2007 .

[32]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[33]  Stefano Mossa,et al.  Truncation of power law behavior in "scale-free" network models due to information filtering. , 2002, Physical review letters.

[34]  Paul Hines,et al.  Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence , 2014, Scientific Reports.

[35]  Seth D. Guikema,et al.  Characterizing and predicting the robustness of power-law networks , 2013, Reliab. Eng. Syst. Saf..

[36]  Lidia A. Braunstein,et al.  Cascading failure and recovery of spatially interdependent networks , 2017 .

[37]  H. Stanley,et al.  Robustness of n interdependent networks with partial support-dependence relationship , 2013 .

[38]  Cesar Ducruet,et al.  Inter-similarity between coupled networks , 2010, ArXiv.

[39]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[40]  W. Li,et al.  The effect of interdependence on the percolation of interdependent networks , 2014, ArXiv.

[41]  S. Buldyrev,et al.  Interdependent networks with identical degrees of mutually dependent nodes. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Leonardo Dueñas-Osorio,et al.  Cascading failures in complex infrastructure systems , 2009 .