Modellbasierte Ermittlung der optimalen Reaktionsführung für integrierte Mehrphasenprozesse

Grundlage fur eine optimale Reaktorauslegung ist die Kenntnis der optimalen Reaktionsfuhrung. Modellbasierte Methoden sind dabei von besonderem Wert, da bei komplexen Systemen eine intuitive Erarbeitung der optimalen Reaktionsfuhrung nicht mehr moglich ist. Am Beispiel der Hydroformulierung langkettiger Alkene wird hier eine auf modellbasierter Optimalsteuerung beruhende Methode beschrieben, die mogliche Stoffruckfuhrungen bereits in einer fruhen Phase der Prozessentwicklung berucksichtigt und damit neben der optimalen Reaktionsfuhrung auch auf Anforderungen an die Trennoperationen schliesen lasst. For the optimal reactor design, the knowledge of the optimal reaction route is crucial. Model-based methods are superior since in complex reactions the intuitive identification of the optimal reaction route is mostly impossible. Using the hydroformylation of long chain olefins as an example, an optimal control-based method is presented which considers the possible recycling of chemical components in early stages of the design process. Thereby, not only the optimal reaction concept can be identified, but also requirements for the downstream separation processes can be derived.

[1]  Kai Sundmacher,et al.  Optimal Reaction Concept and Plant Wide Optimization of the Ethylene Oxide Process , 2012 .

[2]  M. Feinberg,et al.  Optimal reactor design from a geometric viewpoint—I. Universal properties of the attainable region , 1997 .

[3]  K. Sundmacher,et al.  Methodology for the Design of Optimal Chemical Reactors based on the Concept of Elementary Process Functions , 2010 .

[4]  Kai Sundmacher,et al.  Model-Based Reactor Design Based on the Optimal Reaction Route , 2011 .

[5]  L. Biegler,et al.  Constructive targeting approaches for the synthesis of chemical reactor networks , 1992 .

[6]  D. Glasser,et al.  A geometric approach to steady flow reactors: the attainable region and optimization in concentration space , 1987 .

[7]  L. Biegler,et al.  Convex attainable region projections for reactor network synthesis , 2000 .

[8]  Arno Behr,et al.  Hydroformylation of 1-Dodecene in the Thermomorphic Solvent System Dimethylformamide/Decane. Phase Behavior–Reaction Performance–Catalyst Recycling , 2012 .

[9]  Lorenz T. Biegler,et al.  Synthesis of Optimal Chemical Reactor Networks , 1996 .

[10]  K. Sundmacher,et al.  Analysis and optimal design of an ethylene oxide reactor , 2011 .

[11]  Gerhard Schembecker,et al.  READPERT - Development, selection and design of chemical reactors , 1995 .

[12]  D. Glasser,et al.  The attainable region and optimal reactor structures , 1990 .

[13]  K. Sundmacher,et al.  Towards a Methodology for the Systematic Analysis and Design of Efficient Chemical Processes - Part 1: From Unit Operations to Elementary Process Function- , 2008 .

[14]  Kai Sundmacher,et al.  Design of optimal multiphase reactors exemplified on the hydroformylation of long chain alkenes , 2012 .

[15]  Arno Behr,et al.  Analysis of the reaction network for the Rh-catalyzed hydroformylation of 1-dodecene in a thermomorphic multicomponent solvent system , 2013 .

[16]  K. Sundmacher,et al.  Optimal Reactor Design for the Hydroformylation of Long Chain Alkenes in Biphasic Liquid Systems , 2011 .