Développement d'algorithmes et d'un code de calcul pour l'étude des problèmes de l'impact et du choc

Dans beaucoup de problemes de mecanique des solides, la prise en compte du contact avec frottement joue un role preponderant. La bonne prediction des effets du contact avec frottement devient un enjeu majeur pour les industriels. Malheureusement, tres peu de problemes peuvent etre traites de maniere analytique. Il est donc necessaire de developper des methodes numeriques adaptees a ce type de problemes. Dans ce travail, nous proposons une extension de la methode du bi-potentiel, proposee par de Saxce et Feng, pour l'analyse des problemes d'impact entre plusieurs corps deformables dans le cadre des grandes deformations. Pour cela, nous optons pour un schema d'integration du premier ordre a la place d'un schema plus classique du second ordre (Newmark, HHT, . . .). Ce choix permet de ne pas faire intervenir l'acceleration, non definie au moment du choc, dans les calculs. Le modele ainsi developpe combine la methode du bi-potentiel pour la resolution du probleme du contact et un schema du premier ordre pour la discretisation temporelle. Ce travail a abouti au code de calcul par elements finis FER/Impact. Les differentes applications numeriques proposees mettent en evidence la validite et l'efficacite de la methode. Une attention particuliere est portee a la quantification de la dissipation d'energie par frottement.

[1]  G. L. Goudreau,et al.  Evaluation of numerical integration methods in elastodynamics , 1973 .

[2]  Zhi-Qiang Feng,et al.  FER/View - An Interactive Finite Element Post-Processor , 2004 .

[3]  Pierre Alart,et al.  Parallel frictional contact algorithms and industrial applications , 1999 .

[4]  M. Barboteu,et al.  An energy-conserving algorithm for nonlinear elastodynamic contact problems – Extension to a frictional dissipation phenomenon , 2006 .

[5]  René Tinawi,et al.  Une présentation de la méthode des éléments finis , 1983 .

[6]  Ning Hu,et al.  A solution method for dynamic contact problems , 1997 .

[7]  Benoît Magnain,et al.  Extension de la méthode du bi-potentiel à l'analyse des problèmes d'impact , 2005 .

[8]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[9]  Robert E. Fulton,et al.  A parallel finite element procedure for contact-impact problems , 2003, Engineering with Computers.

[10]  Zhi-Qiang Feng,et al.  On the modeling of contact/impact problems between rubber materials , 2006 .

[11]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[12]  Panayiotis Papadopoulos,et al.  A Lagrange multiplier method for the finite element solution of frictionless contact problems , 1998 .

[13]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[14]  Byung Man Kwak,et al.  Dynamic Analysis of Two Dimensional Frictional Contact by Linear Complementarity Problem Formulation , 1996 .

[15]  Robert L. Taylor,et al.  On a finite element method for dynamic contact/impact problems , 1993 .

[16]  F. Jourdan,et al.  A Gauss-Seidel like algorithm to solve frictional contact problems , 1998 .

[17]  Alain Combescure,et al.  Handling contact in multi-domain simulation of automobile crashes , 2006 .

[18]  Peter W. Christensen,et al.  A semi-smooth newton method for elasto-plastic contact problems , 2002 .

[19]  Klaus-Jürgen Bathe,et al.  A finite element procedure for the analysis of thermo-mechanical solids in contact , 2000 .

[20]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[21]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[22]  K. Tamma,et al.  A robust self‐starting explicit computational methodology for structural dynamic applications: Architecture and representations , 1990 .

[23]  Niclas Strömberg,et al.  Finite element treatment of two-dimensional thermoelastic wear problems , 1999 .

[24]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[25]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[26]  R. Taylor,et al.  Lagrange constraints for transient finite element surface contact , 1991 .

[27]  G. Saxcé,et al.  New Inequality and Functional for Contact with Friction: The Implicit Standard Material Approach∗ , 1991 .

[28]  François Peyraut,et al.  Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies , 2003 .

[29]  Jean-Michel Cros,et al.  The bi-potential method applied to the modeling of dynamic problems with friction , 2005 .

[30]  Danielle Fortuné,et al.  Nonlinear isotropic constitutive laws: choice of the three invariants, convex potentials and constitutive inequalities , 1999 .

[31]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[32]  A. Curnier,et al.  Anisotropic dry friction between two orthotropic surfaces undergoing large displacements , 1993 .

[33]  Jean-Philippe Ponthot Traitement unifié de la Mécanique des Milieux Continus Solides en Grandes Transformations par la Méthode des Eléments Finis , 1995 .

[34]  H. Parisch A consistent tangent stiffness matrix for three‐dimensional non‐linear contact analysis , 1989 .

[35]  P. Wriggers,et al.  FINITE ELEMENT FORMULATION OF LARGE DEFORMATION IMPACT-CONTACT PROBLEMS WITH FRICTION , 1990 .

[36]  Houari Boumediène Khenous Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .

[37]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[38]  Jean-Michel Cros,et al.  FER/SubDomain: An Integrated Environment for Finite Element Analysis using Object-Oriented Approach , 2002 .

[39]  Michel Jean Simulation numérique des problèmes de contact avec frottement , 1993 .

[40]  Noboru Kikuchi,et al.  Penalty/finite-element approximations of a class of unilateral problems in linear elasticity , 1981 .

[41]  Jean-Michel Cros,et al.  Solution of large deformation impact problems with friction between Blatz-Ko hyperelastic bodies , 2006 .

[42]  I. Huněk On a penalty formulation for contact-impact problems , 1993 .

[43]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[44]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[45]  Modélisation des problèmes d'impact avec dissipation d'énergie par frottement , 2005 .

[46]  Benoît Magnain,et al.  Un algorithme efficace pour les problèmes d'impact avec frottement , 2005 .

[47]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[48]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[49]  Pierre Alart,et al.  A domain decomposition strategy for nonclassical frictional multi-contact problems , 2001 .

[50]  Maciej Wronski Couplage du contact et du frottement avec la mécanique non linéaire des solides en grandes déformations : application à l'étude des blocs de mousse en polyuréthane , 1994 .

[51]  Tod A. Laursen,et al.  Improved implicit integrators for transient impact problems––dynamic frictional dissipation within an admissible conserving framework , 2003 .

[52]  S. Stupkiewicz,et al.  An anisotropic friction and wear model , 1994 .

[53]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[54]  Zhi-Qiang Feng,et al.  The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms , 1998 .

[55]  Patrice Hauret,et al.  Méthodes numériques pour la dynamique des structures non linéaires incompressibles à deux échelles , 2004 .

[56]  Peter Wriggers,et al.  Contact constraints within coupled thermomechanical analysis—A finite element model , 1994 .

[57]  O. C. Zienkiewicz,et al.  A note on numerical computation of elastic contact problems , 1975 .

[58]  FER/Impact : logiciel de simulation numérique des problèmes d’impact , 2006 .

[59]  Anil Chaudhary,et al.  A solution method for static and dynamic analysis of three-dimensional contact problems with friction , 1986 .

[60]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[61]  P. Alart,et al.  Consistent tangent matrices of curved contact operators involving anisotropic friction , 1995 .

[62]  William L. Ko,et al.  Application of Finite Elastic Theory to the Deformation of Rubbery Materials , 1962 .

[63]  M. Dokainish,et al.  A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods , 1989 .

[64]  J. S.,et al.  Theory of Friction , 1872, Nature.

[65]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[66]  Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface , 2006 .

[67]  Michel Raous,et al.  Consistent time discretization for a dynamical frictional contact problem and complementarity techniques , 1998 .

[68]  Mark O. Neal,et al.  Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .

[69]  Gabriel Dos Reis Vers une nouvelle approche du calcul scientifique en C , 1998 .

[70]  T. D. Sachdeva,et al.  A Finite Element Method for the Elastic Contact Problems , 1981 .

[71]  Mohammed Hjiaj,et al.  Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule , 2004 .

[72]  H. Xing,et al.  Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy , 2002 .

[73]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .