A unified approach to meshless analysis of thin to moderately thick plates based on a shear-locking-free Mindlin theory formulation

Abstract The conventional numerical approximation of Mindlin plate equations can lead to erroneous solutions for thin plates. The so-called shear-locking problem has been well studied in the context of the finite element method (FEM) whereas the development of numerical formulations for its successful elimination in meshfree methods is still a subject of intensive research. This paper studies the effectiveness of some of the most commonly adopted techniques for the reduction of shear-locking and presents the application of a shear-locking-free formulation based on first-order Mindlin plate theory. In this modified formulation, the shear strains are incorporated as degrees of freedom (DOFs) in lieu of the rotational DOFs in the conventional Mindlin theory formulation. A straightforward transformation technique is presented for the enforcement of boundary conditions and comparisons are made with available analytical and numerical solutions. The generalised reproducing kernel particle method (RKPM) is adopted as the numerical tool and a series of numerical examples are presented to demonstrate the accuracy and performance of the presented method.

[1]  L. Traversoni Natural Neighbour Finite Elements , 1970 .

[2]  A. K. Rao,et al.  Flexure of Thick Rectangular Plates , 1973 .

[3]  R. M. Natal Jorge,et al.  Composite laminated plate analysis using the natural radial element method , 2013 .

[4]  Jorge Belinha The natural neighbour radial point interpolation method : solid mechanics and mechanobiology applications , 2012 .

[5]  E. Ramm,et al.  A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .

[6]  Analysis of Mindlin plate by the element free Galerkin method applying penalty technique , 1999 .

[7]  M. Khezri,et al.  A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS , 2011 .

[8]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[9]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .

[10]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[11]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[12]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[13]  Tinh Quoc Bui,et al.  Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method , 2011 .

[14]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[15]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part II—applications , 1999 .

[16]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[17]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[18]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[19]  K. Liew,et al.  Modeling via differential quadrature method: Three-dimensional solutions for rectangular plates , 1998 .

[20]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[21]  G. Baradaran,et al.  Three-dimensional static analysis of rectangular thick plates by using the meshless local Petrov—Galerkin method , 2009 .

[22]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[23]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[24]  R. Jorge,et al.  Analysis of 3D solids using the natural neighbour radial point interpolation method , 2007 .

[25]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[26]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part I—formulation and theory , 1999 .

[27]  C. Tiago,et al.  On the procedures to eliminate shear locking in meshless methods , 2005 .

[28]  Jorge Belinha,et al.  Analysis of plates and laminates using the element-free Galerkin method , 2006 .

[29]  YuanTong Gu,et al.  Assessment and applications of point interpolation methods for computational mechanics , 2004 .

[30]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[31]  Wing Kam Liu,et al.  MESHLESS METHODS FOR SHEAR-DEFORMABLE BEAMS AND PLATES , 1998 .

[32]  G. Y. Li,et al.  ANALYSIS OF MINDLIN–REISSNER PLATES USING CELL-BASED SMOOTHED RADIAL POINT INTERPOLATION METHOD , 2010 .

[33]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[34]  Mark A. Bradford,et al.  Analysis of thick and orthotropic rectangular laminated composite plates using a state-space-based generalised RKP-FSM , 2015 .

[35]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[36]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[37]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[38]  Guangyao Li,et al.  Analysis of plates and shells using an edge-based smoothed finite element method , 2009 .

[39]  R. M. Natal Jorge,et al.  Analysis of plates and laminates using the natural neighbour radial point interpolation method. , 2008 .

[40]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[41]  S. N. Atluri,et al.  Analysis of shear flexible beams, using the meshless local Petrov‐Galerkin method, based on a locking‐free formulation , 2001 .

[42]  R. M. Natal Jorge,et al.  The natural neighbour radial point interpolation method: dynamic applications , 2009 .

[43]  C. Duarte,et al.  hp-Clouds in Mindlin's thick plate model , 2000 .

[44]  Tinh Quoc Bui,et al.  Analysis of cracked shear deformable plates by an effective meshfree plate formulation , 2015 .

[45]  R. M. Natal Jorge,et al.  Analysis of thick plates by the natural radial element method , 2013 .

[46]  Hui-Ping Wang,et al.  New boundary condition treatments in meshfree computation of contact problems , 2000 .

[47]  Gregory J. Wagner,et al.  Application of essential boundary conditions in mesh-free methods: a corrected collocation method , 2000 .

[48]  Hossein M. Shodja,et al.  A meshless approach for solution of Burgers' equation , 2008 .

[49]  E. Jomehzadeh,et al.  Reformulation of Navier equations for solving three-dimensional elasticity problems with applications to thick plate analysis , 2009 .

[50]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[51]  M Levy,et al.  MEMOIRE SUR LA THEORIE DES PLAQUES ELASTIQUES PLANES , 1877 .

[52]  Ali Hashemian,et al.  A Numerical Solution of 2D Buckley-Leverett Equation via Gradient Reproducing Kernel Particle Method , 2009 .

[53]  K. Y. Dai,et al.  Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method , 2008 .

[54]  V. Leitão,et al.  Eliminating Shear-Locking in Meshless Methods: A Critical Overview and a New Framework for Structural Theories , 2007 .

[55]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[56]  Hossein M. Shodja,et al.  Gradient reproducing kernel particle method , 2008 .

[57]  Philippe Bouillard,et al.  On elimination of shear locking in the element‐free Galerkin method , 2001 .

[58]  M. Gharib,et al.  A state space augmented generalised RKPM for three-dimensional analysis of thick and laminated composite plates , 2015 .