Approximation of matrix operators applied to multiple vectors

In this paper we propose a numerical method for approximating the product of a matrix function with multiple vectors by Krylov subspace methods combined with a QR decomposition of these vectors. This problem arises in the implementation of exponential integrators for semilinear parabolic problems. We will derive reliable stopping criteria and we suggest variants using up- and downdating techniques. Moreover, we show how Ritz vectors can be included in order to speed up the computation even further. By a number of numerical examples, we will illustrate that the proposed method will reduce the total number of Krylov steps significantly compared to a standard implementation if the vectors correspond to the evaluation of a smooth function at certain quadrature points.

[1]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[2]  L. Knizhnerman Calculation of functions of unsymmetric matrices using Arnoldi's method , 1991 .

[3]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[4]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[5]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[6]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[7]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[8]  VALERIA SIMONCINI,et al.  MATRIX FUNCTIONS , 2006 .

[9]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[10]  Igor Moret,et al.  Interpolating functions of matrices on zeros of quasi‐kernel polynomials , 2005, Numer. Linear Algebra Appl..

[11]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[12]  M. Hochbruck,et al.  Exponential Runge--Kutta methods for parabolic problems , 2005 .

[13]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[14]  Brynjulf Owren,et al.  Solving the nonlinear Schrodinger equation using exponential integrators , 2006 .

[15]  Anne Greenbaum,et al.  Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..

[16]  Brynjulf Owren,et al.  B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..

[17]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[18]  Marco Vianello,et al.  Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .

[19]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[20]  Jörg Niehoff,et al.  Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren , 2007 .

[21]  Vladimir Druskin,et al.  Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[23]  Mari Paz Calvo,et al.  A class of explicit multistep exponential integrators for semilinear problems , 2006, Numerische Mathematik.

[24]  D. Stewart,et al.  Error estimates for Krylov subspace approximations of matrix exponentials , 1996 .

[25]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[26]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[27]  L. A. Kniknerman Error bounds in Arnoldi's method: the case of a normal matrix , 1992 .

[28]  Marco Vianello,et al.  Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..

[29]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[30]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[31]  Martin Nilsson,et al.  A Minimal Residual Interpolation Method for Linear Equations with Multiple Right-Hand Sides , 2004, SIAM J. Sci. Comput..

[32]  Valeria Simoncini,et al.  Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..

[33]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .

[35]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[36]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[37]  Marco Vianello,et al.  The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations , 2004, International Conference on Computational Science.

[38]  B. Nour-Omid Applications of the Lanczos method , 1989 .

[39]  Marco Vianello,et al.  Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials , 2006, International Conference on Computational Science.