Resurrecting b ¯ bh with kinematic shapes

: The associated production of a b ¯ b pair with a Higgs boson could provide an important probe to both the size and the phase of the bottom-quark Yukawa coupling, y b . However, the signal is shrouded by several background processes including the irreducible Zh, Z → b ¯ b background. We show that the analysis of kinematic shapes provides us with a concrete prescription for separating the y b -sensitive production modes from both the irreducible and the QCD-QED backgrounds using the b ¯ bγγ final state. We draw a page from game theory and use Shapley values to make Boosted Decision Trees interpretable in terms of kinematic measurables and provide physics insights into the variances in the kinematic shapes of the different channels that help us complete this feat. Adding interpretability to the machine learning algorithm opens up the black-box and allows us to cherry-pick only those kinematic variables that matter most in the analysis. We resurrect the hope of constraining the size and, possibly, the phase of y b using kinematic shape studies of b ¯ bh production with the full HL-LHC data and at FCC-hh.

[1]  Blaz Bortolato,et al.  Optimized probes of CP-odd effects in the tt¯h process at hadron colliders , 2021 .

[2]  Jun Gao,et al.  Investigating bottom-quark Yukawa interaction at Higgs factory , 2020, Chinese Physics C.

[3]  J. Brod,et al.  Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order , 2018, Journal of High Energy Physics.

[4]  D. Budker,et al.  Searches for new sources of CP violation using molecules as quantum sensors , 2020, 2010.08709.

[5]  Q. Cao,et al.  New observable for measuring the CP property of top-Higgs interaction * , 2020, 2008.13442.

[6]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[7]  Hoang Dai Nghia Nguyen,et al.  Combined measurements of Higgs boson production and decay using up to $80$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV collected with the ATLAS experiment , 2019, 1909.02845.

[8]  France,et al.  Higgs Boson studies at future particle colliders , 2019, Journal of High Energy Physics.

[9]  M. Zaro,et al.  RIP Hb ¯ b : how other Higgs production modes conspire to kill a rare signal at the LHC , 2020 .

[10]  H. Bahl Indirect CP probes of the Higgs–top-quark interaction: current LHC constraints and future opportunities , 2020 .

[11]  M. D'Onofrio,et al.  Physics Briefing Book [Input for the European Strategy for Particle Physics Update 2020] , 2019 .

[12]  Kai Ma Enhancing CP measurement of the Yukawa interactions of top-quark at e−e+ collider , 2019, Physics Letters B.

[13]  R. Godbole,et al.  Determining the spacetime structure of bottom-quark couplings to spin-zero particles , 2019, Physical Review D.

[14]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[15]  J. Brod,et al.  Electric dipole moment constraints on CP-violating light-quark Yukawas , 2018, Journal of High Energy Physics.

[16]  F. Maltoni,et al.  Top-Yukawa contributions to bbH production at the LHC , 2018, Journal of High Energy Physics.

[17]  P. Fierlinger,et al.  Electric dipole moments of atoms, molecules, nuclei, and particles , 2017, Reviews of Modern Physics.

[18]  Brandon M. Greenwell,et al.  Interpretable Machine Learning , 2019, Hands-On Machine Learning with R.

[19]  Nicola De Filippis,et al.  Higgs Physics at the HL-LHC and HE-LHC , 2019, 1902.00134.

[20]  C. Panda,et al.  Improved limit on the electric dipole moment of the electron , 2018, Nature.

[21]  V. M. Ghete,et al.  Observation of Higgs Boson Decay to Bottom Quarks. , 2018, Physical review letters.

[22]  Hoang Dai Nghia Nguyen,et al.  Birmingham Observation of H bb decays and VH production with the ATLAS detector , 2018 .

[23]  E. A. Hessels,et al.  Orientation-dependent hyperfine structure of polar molecules in a rare-gas matrix: A scheme for measuring the electron electric dipole moment , 2018, Physical Review A.

[24]  L. F. Chaparro Sierra,et al.  Observation of tt[over ¯]H Production. , 2018, Physical review letters.

[25]  Atlas Collaboration Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector , 2018, 1806.00425.

[26]  E. A. Hessels,et al.  Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron , 2017, 1710.08785.

[27]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[28]  W. Hou,et al.  Probing for Extra Top Yukawa Couplings in Light of tt̄h(125) Observation , 2018 .

[29]  Jeong Han Kim,et al.  Probing the top-Higgs Yukawa CP structure in dileptonic tth with M 2 -assisted reconstruction , 2018 .

[30]  N. Greiner,et al.  Diphoton production in association with two bottom jets , 2017, The European Physical Journal C.

[31]  J. Latorre,et al.  Parton distributions from high-precision collider data , 2017, The European Physical Journal C.

[32]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[33]  K. Cossel,et al.  Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions. , 2017, Physical review letters.

[34]  S. D. Santos,et al.  Probing the CP nature of the Higgs coupling in tt¯h events at the LHC , 2017, 1801.04954.

[35]  Takuso Sato,et al.  Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation , 2017, 1703.01570.

[36]  K. Cranmer,et al.  Better Higgs boson measurements through information geometry , 2016, 1612.05261.

[37]  K. Mawatari,et al.  tWH associated production at the LHC , 2016, The European physical journal. C, Particles and fields.

[38]  Study of the double Higgs production channel H ( → bb̄ ) H ( → γγ ) with the ATLAS experiment at the HL-LHC The ATLAS Collaboration , 2017 .

[39]  M. Xiao,et al.  Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques , 2016, 1606.03107.

[40]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[41]  K. Kiers,et al.  Pseudoscalar top-Higgs coupling: exploration of CP-odd observables to resolve the sign ambiguity , 2016, 1603.03632.

[42]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[43]  D. Wackeroth,et al.  Higgs boson production in association with b jets in the powheg box , 2015, 1509.05843.

[44]  M. Bonvini,et al.  Matched predictions for the b (cid:22) bH cross section at the 13 TeV LHC , 2016 .

[45]  S. Forte,et al.  Higgs production in bottom-quark fusion in a matched scheme , 2015, 1508.01529.

[46]  K. Mawatari,et al.  Higgs production in association with a single top quark at the LHC , 2015, The European physical journal. C, Particles and fields.

[47]  S. Lloyd,et al.  LHAPDF6: parton density access in the LHC precision era , 2014, The European Physical Journal C.

[48]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[49]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[50]  M. Bonvini,et al.  Resummation and matching of b-quark mass effects in bb̄H production , 2015 .

[51]  R. Frederix,et al.  Higgs production in association with bottom quarks , 2014, 1409.5301.

[52]  Kentarou Mawatari,et al.  Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction , 2014, The European physical journal. C, Particles and fields.

[53]  P. Demin,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2014, Journal of High Energy Physics.

[54]  Jure Zupan,et al.  Constraints on CP-violating Higgs couplings to the third generation , 2013, 1310.1385.

[55]  E. Eichten,et al.  Muon Collider Higgs Factory for Snowmass 2013 , 2013, 1308.2143.

[56]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[58]  J. Butterworth,et al.  Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .

[59]  D. Wackeroth,et al.  Higgs Production in Association with Bottom Quarks at Hadron Colliders , 2005, hep-ph/0508293.

[60]  D. Wackeroth,et al.  Exclusive Higgs boson production with bottom quarks at hadron colliders , 2003, hep-ph/0311067.

[61]  D. Wackeroth,et al.  Higgs Boson Production in Association with Bottom Quarks , 2004, hep-ph/0405302.

[62]  R. Harlander,et al.  Higgs boson production in bottom quark fusion at next-to-next-to-leading order , 2003, hep-ph/0304035.

[63]  M. Diehl,et al.  Optimal observables for the measurement of three gauge boson couplings ine+e−→W+W− , 1994 .

[64]  Lloyd S. Shapley,et al.  Notes on the n-Person Game — II: The Value of an n-Person Game , 1951 .