Generalized Resultants over Unirational Algebraic Varieties

In this paper, we propose a new method, based on Bezoutian matrices, for computing a nontrivial multiple of the resultant over a projective variety X, which is described on an open subset by a parameterization. This construction, which generalizes the classical and toric one, also applies for instance to blowing up varieties and to residual intersection problems. We recall the classical notion of resultant over a variety X. Then we extend it to varieties which are parameterized on a dense open subset and give new conditions for the existence of the resultant over these varieties. We prove that any maximal nonzero minor of the corresponding Bezoutian matrix yields a nontrivial multiple of the resultant. We end with some experiments.

[1]  Dan Schiller,et al.  Digital Capitalism: Networking the Global Market System , 1999 .

[2]  Gordon Graham,et al.  The Internet: A Philosophical Inquiry , 1999 .

[3]  I. Emiris An E cient Algorithm for the Sparse Mixed Resultant John Canny ? and , 1993 .

[4]  B. Mourrain,et al.  Algorithms for residues and Lojasiewicz exponents , 2000 .

[5]  Deepak Kapur,et al.  Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.

[6]  Marie-Françoise Roy,et al.  Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .

[7]  J. J. Sylvester,et al.  XXIII. A method of determining by mere inspection the derivatives from two equations of any degree , 1840 .

[8]  B. Mourrain Enumeration problems in geometry, robotics and vision , 1996 .

[9]  Mohamed Elkadi,et al.  Approche effective des résidus algébriques , 1996 .

[10]  Sm Watt,et al.  Special Issue on Symbolic Numeric Algebra for Polynomials , 1998 .

[11]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[12]  Susan Landau,et al.  Privacy on the Line: The Politics of Wiretapping and Encryption, Updated and Expanded Edition , 1998 .

[13]  J. Jouanolou,et al.  Le formalisme du résultant , 1991 .

[14]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.

[15]  Dinesh Manocha,et al.  SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[16]  Sofie Juel,et al.  The Uniform Domain Name Dispute Resolution Policy , 2000 .

[17]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[18]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[19]  B. Mourrain,et al.  Algebraic Approach of Residues and Applications , 1996 .

[20]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .

[21]  Uwe Storch,et al.  Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .

[22]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[23]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[24]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[25]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[26]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[27]  I. Shafarevich Basic algebraic geometry , 1974 .

[28]  Jon Postel,et al.  Internet Protocol , 1981, RFC.

[29]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[30]  Victor Y. Pan,et al.  Controlled iterative methods for solving polynomial systems , 1998, ISSAC '98.

[31]  Dinesh Manocha,et al.  Multipolynomial Resultant Algorithms , 1993, J. Symb. Comput..

[32]  Bernard Mourrain,et al.  A new algorithm for the geometric decomposition of a variety , 1999, ISSAC '99.