MEASURING THE LARGEST ANGULAR SCALE CMB B-MODE POLARIZATION WITH GALACTIC FOREGROUNDS ON A CUT SKY

We consider the effectiveness of foreground cleaning in the recovery of Cosmic Microwave Background (CMB) polarization sourced by gravitational waves for tensor-to-scalar ratios in the range $0<r<0.1$. Using the planned survey area, frequency bands, and sensitivity of the Cosmology Large Angular Scale Surveyor (CLASS), we simulate maps of Stokes $Q$ and $U$ parameters at 40, 90, 150, and 220 GHz, including realistic models of the CMB, diffuse Galactic thermal dust and synchrotron foregrounds, and Gaussian white noise. We use linear combinations (LCs) of the simulated multifrequency data to obtain maximum likelihood estimates of $r$, the relative scalar amplitude $s$, and LC coefficients. We find that for 10,000 simulations of a CLASS-like experiment using only measurements of the reionization peak ($\ell\leq23$), there is a 95% C.L. upper limit of $r<0.017$ in the case of no primordial gravitational waves. For simulations with $r=0.01$, we recover at 68% C.L. $r=0.012^{+0.011}_{-0.006}$. The reionization peak corresponds to a fraction of the multipole moments probed by CLASS, and simulations including $30\leq\ell\leq100$ further improve our upper limits to $r<0.008$ at 95% C.L. ($r=0.01^{+0.004}_{-0.004}$ for primordial gravitational waves with $r=0.01$). In addition to decreasing the current upper bound on $r$ by an order of magnitude, these foreground-cleaned low multipole data will achieve a cosmic variance limited measurement of the E-mode polarization's reionization peak.

[1]  E. Leitch,et al.  SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope , 2012, Other Conferences.

[2]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[3]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.

[4]  Hybrid Estimation of CMB Polarization Power Spectra , 2006, astro-ph/0601107.

[5]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[6]  H. Ishitsuka,et al.  GroundBIRD: an experiment for CMB polarization measurements at a large angular scale from the ground , 2012, Other Conferences.

[7]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[8]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[9]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[10]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[11]  W. White,et al.  A CMB polarization primer , 1997 .

[12]  E. Hivon,et al.  Fast estimation of polarization power spectra using correlation functions , 2003, astro-ph/0303414.

[13]  G. Efstathiou Hybrid estimation of cosmic microwave background polarization power spectra , 2006 .

[14]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[15]  Austin,et al.  SIMPLE FOREGROUND CLEANING ALGORITHM FOR DETECTING PRIMORDIAL B-MODE POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND , 2011, 1101.5210.

[16]  J. J. Bock,et al.  SPIDER: a balloon-borne CMB polarimeter for large angular scales , 2010, Astronomical Telescopes + Instrumentation.

[17]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[18]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[19]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[20]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[21]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[22]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[23]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[24]  Peter Ade,et al.  The POLARBEAR experiment , 2012, Other Conferences.

[25]  N. Ysard,et al.  Separation of anomalous and synchrotron emissions using WMAP polarization data , 2008, 0802.3345.

[26]  M. Halpern,et al.  Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis , 2006 .

[27]  S. Masi,et al.  The Large-Scale Polarization Explorer (LSPE) , 2012, Other Conferences.

[28]  Edward J. Wollack,et al.  Properties of a variable-delay polarization modulator. , 2011, Applied optics.

[29]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[30]  Steven Gratton,et al.  Impact of Galactic polarized emission on B-mode detection at low multipoles , 2009, 0902.4803.

[31]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[32]  U. Fuskeland,et al.  SPATIAL VARIATIONS IN THE SPECTRAL INDEX OF POLARIZED SYNCHROTRON EMISSION IN THE 9 yr WMAP SKY MAPS , 2014, 1404.5323.

[33]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[34]  Adrian T. Lee,et al.  The EBEX experiment , 2004, SPIE Optics + Photonics.

[35]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[36]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[37]  D. Kazanas Dynamics of the universe and spontaneous symmetry breaking , 1980 .

[38]  Edward J. Wollack,et al.  The cosmology large angular scale surveyor (CLASS): 40 GHz optical design , 2012, Other Conferences.

[39]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[40]  Michele Limon,et al.  The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters , 2014, Astronomical Telescopes and Instrumentation.