An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator.

We propose high-quality generation of uniform multiple fluorescence spots (MFS) with a spatial light modulator (SLM) and demonstrate uniform laser scanning in multifocal multiphoton microscopy (MMM). The MFS excitation method iteratively updates a computer-generated hologram (CGH) using correction coefficients to improve the fluorescence intensity distribution in a dye solution whose consistency is uniform. This simple correction method can be applied for calibration of the MMM before observation of living tissue. We experimentally demonstrate an improvement of the uniformity of a 10 × 10 grid of MFS by using a dye solution. After the calibration, we performed laser scanning with two-photon excitation to observe fluorescent polystyrene beads, as well as the gastric gland of a guinea pig specimen.

[1]  M R Taghizadeh,et al.  Multiphoton multifocal microscopy exploiting a diffractive optical element. , 2003, Optics letters.

[2]  Valentina Emiliani,et al.  LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression. , 2012, Optics express.

[3]  Nobuo Nishida,et al.  Variable holographic femtosecond laser processing by use of a spatial light modulator , 2005 .

[4]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[5]  Karsten Bahlmann,et al.  Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. , 2007, Optics express.

[6]  Stefan W. Hell,et al.  Multifocal Multi-Photon Microscopy , 2006 .

[7]  Yoshio Hayasaki Holographic femtosecond laser processing , 2010, LASE.

[8]  Hans Peter Herzig,et al.  Review of iterative Fourier-transform algorithms for beam shaping applications , 2004 .

[9]  Naoya Matsumoto,et al.  Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Haruyoshi Toyoda,et al.  High-quality generation of a multispot pattern using a spatial light modulator with adaptive feedback. , 2012, Optics letters.

[11]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[12]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[13]  H. Niu,et al.  Multifocal multiphoton microscopy based on a spatial light modulator , 2012, Applied physics. B, Lasers and optics.

[14]  Sergio Fantini,et al.  Multifocal multiphoton microscopy based on multianode photomultiplier tubes. , 2007, Optics express.

[15]  R Dändliker,et al.  Optimized kinoform structures for highly efficient fan-out elements. , 1992, Applied optics.

[16]  T Nielsen,et al.  High efficiency beam splitter for multifocal multiphoton microscopy , 2001, Journal of microscopy.

[17]  Joseph Rosen,et al.  Electro-optic hologram generation on spatial light modulators , 1992 .

[18]  Winfried Denk,et al.  On the fundamental imaging-depth limit in two-photon microscopy , 2006 .

[19]  Nikola Krstajic,et al.  Multifocal multiphoton microscopy with adaptive optical correction , 2013, Photonics West - Biomedical Optics.

[20]  Yoshio Hayasaki,et al.  Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. , 2007, Applied optics.

[21]  Takashi Inoue,et al.  LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation , 2007, SPIE OPTO.

[22]  H Toyoda,et al.  Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator. , 1994, Applied optics.

[23]  J Shamir,et al.  Iterative generation of holograms on spatial light modulators. , 1990, Optics letters.