Large Alphabet Compression and Predictive Distributions through Poissonization and Tilting

This paper introduces a convenient strategy for coding and predicting sequences of independent, identically distributed random variables generated from a large alphabet of size $m$. In particular, the size of the sample is allowed to be variable. The employment of a Poisson model and tilting method simplifies the implementation and analysis through independence. The resulting strategy is optimal within the class of distributions satisfying a moment condition, and is close to optimal for the class of all i.i.d distributions on strings of a given length. Moreover, the method can be used to code and predict strings with a condition on the tail of the ordered counts. It can also be applied to distributions in an envelope class.

[1]  Wojciech Szpankowski,et al.  Minimax redundancy for large alphabets , 2010, 2010 IEEE International Symposium on Information Theory.

[2]  Peter L. Bartlett,et al.  Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families , 2013, COLT.

[3]  Dominique Bontemps Universal Coding on Infinite Alphabets: Exponentially Decreasing Envelopes , 2011, IEEE Transactions on Information Theory.

[4]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[5]  Andrew R. Barron,et al.  Minimax redundancy for the class of memoryless sources , 1997, IEEE Trans. Inf. Theory.

[6]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[7]  Alon Orlitsky,et al.  Always Good Turing: Asymptotically Optimal Probability Estimation , 2003, Science.

[8]  J. Rissanen,et al.  ON SEQUENTIALLY NORMALIZED MAXIMUM LIKELIHOOD MODELS , 2008 .

[9]  Jan M. Van Campenhout,et al.  Maximum entropy and conditional probability , 1981, IEEE Trans. Inf. Theory.

[10]  Lada A. Adamic Zipf, Power-laws, and Pareto-a ranking tutorial , 2000 .

[11]  Aurélien Garivier,et al.  Coding on Countably Infinite Alphabets , 2008, IEEE Transactions on Information Theory.

[12]  Andrew R. Barron,et al.  Asymptotic minimax regret for data compression, gambling, and prediction , 1997, IEEE Trans. Inf. Theory.

[13]  Y. Shtarkov,et al.  Multialphabet universal coding of memoryless sources , 1995 .

[14]  I. Csiszár Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .