Learning from evolving data streams through ensembles of random patches

[1]  Albert Bifet,et al.  On Ensemble Techniques for Data Stream Regression , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[2]  Bob Durrant,et al.  A Diversity-aware Model for Majority Vote Ensemble Accuracy , 2020, AISTATS.

[3]  João Gama,et al.  Machine learning for streaming data: state of the art, challenges, and opportunities , 2019, SKDD.

[4]  Heitor Murilo Gomes,et al.  Streaming Random Patches for Evolving Data Stream Classification , 2019, 2019 IEEE International Conference on Data Mining (ICDM).

[5]  Jean Paul Barddal,et al.  Adaptive random forests for data stream regression , 2018, ESANN.

[6]  Talel Abdessalem,et al.  Adaptive random forests for evolving data stream classification , 2017, Machine Learning.

[7]  R. Durrant,et al.  Linear dimensionality reduction in linear time: Johnson-Lindenstrauss-type guarantees for random subspace , 2017, 1705.06408.

[8]  Jean Paul Barddal,et al.  A Survey on Ensemble Learning for Data Stream Classification , 2017, ACM Comput. Surv..

[9]  Geoffrey I. Webb,et al.  Characterizing concept drift , 2015, Data Mining and Knowledge Discovery.

[10]  Jerzy Stefanowski,et al.  Combining block-based and online methods in learning ensembles from concept drifting data streams , 2014, Inf. Sci..

[11]  A. Bifet,et al.  A survey on concept drift adaptation , 2014, ACM Comput. Surv..

[12]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[13]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[14]  Richard John Stapenhurst Diversity, margins and non-stationary learning , 2012 .

[15]  Gilles Louppe,et al.  Ensembles on Random Patches , 2012, ECML/PKDD.

[16]  Hsuan-Tien Lin,et al.  An Online Boosting Algorithm with Theoretical Justifications , 2012, ICML.

[17]  Ludmila I. Kuncheva,et al.  Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data , 2012, Pattern Recognit..

[18]  Geoff Holmes,et al.  Ensembles of Restricted Hoeffding Trees , 2012, TIST.

[19]  Nitesh V. Chawla,et al.  Heuristic Updatable Weighted Random Subspaces for Non-stationary Environments , 2011, 2011 IEEE 11th International Conference on Data Mining.

[20]  Saso Dzeroski,et al.  Learning model trees from evolving data streams , 2010, Data Mining and Knowledge Discovery.

[21]  Geoff Holmes,et al.  Leveraging Bagging for Evolving Data Streams , 2010, ECML/PKDD.

[22]  Xin Yao,et al.  The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift , 2010, IEEE Transactions on Knowledge and Data Engineering.

[23]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[24]  Juan José Rodríguez Diez,et al.  Random Subspace Ensembles for fMRI Classification , 2010, IEEE Transactions on Medical Imaging.

[25]  David B. Skillicorn,et al.  Classifying Evolving Data Streams Using Dynamic Streaming Random Forests , 2008, DEXA.

[26]  Marcus A. Maloof,et al.  Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..

[27]  Saso Dzeroski,et al.  Combining Bagging and Random Subspaces to Create Better Ensembles , 2007, IDA.

[28]  Ricard Gavaldà,et al.  Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.

[29]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[30]  Yi Lin,et al.  Random Forests and Adaptive Nearest Neighbors , 2006 .

[31]  Geoff Holmes,et al.  Stress-Testing Hoeffding Trees , 2005, PKDD.

[32]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[33]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[34]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[35]  Stuart J. Russell,et al.  Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[36]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[37]  Leo Breiman,et al.  Pasting Small Votes for Classification in Large Databases and On-Line , 1999, Machine Learning.

[38]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[39]  Ludmila I. Kuncheva,et al.  That Elusive Diversity in Classifier Ensembles , 2003, IbPRIA.

[40]  Partha Niyogi,et al.  Almost-everywhere Algorithmic Stability and Generalization Error , 2002, UAI.

[41]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[42]  Rocco A. Servedio,et al.  Smooth Boosting and Learning with Malicious Noise , 2001, J. Mach. Learn. Res..

[43]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[44]  Pedro M. Domingos A Unified Bias-Variance Decomposition for Zero-One and Squared Loss , 2000, AAAI/IAAI.

[45]  Xin Yao,et al.  Ensemble learning via negative correlation , 1999, Neural Networks.

[46]  Trevor J. M. Bench-Capon,et al.  Proceedings of the 10th International Conference on Database and Expert Systems Applications , 1999 .

[47]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[49]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.