The Integrated Probabilistic Data Association Filter Adapted to Lie Groups

The Integrated Probabilistic Data Association Filter is a target tracking algorithm based on the Probabilistic Data Association Filter (PDAF) that calculates a statistical measure that indicates if a track should be rejected or confirmed to represent a target. The main contribution of this paper is to adapt the IPDA filter to target models that evolve on connected unimodular Lie groups, and where the measurements models also involve a Lie group. The paper contains a high level introduction to Lie groups, and then shows applications of the theory to tracking a car from an overhead UAV using camera information.

[1]  Timothy D. Barfoot,et al.  State Estimation for Robotics , 2017 .

[2]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[3]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[4]  Udo Frese,et al.  Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds , 2011, Inf. Fusion.

[5]  Olav Egeland,et al.  An EKF for Lie Groups with Application to Crane Load Dynamics , 2019 .

[6]  Ning Li,et al.  SPRT-Based track confirmation and rejection , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[7]  Darko Musicki,et al.  Joint Integrated Probabilistic Data Association - JIPDA , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[8]  Y. Bar-Shalom Tracking and data association , 1988 .

[9]  Audrey Giremus,et al.  Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using Concentrated Gaussian Distributions , 2014, Journal of Mathematical Imaging and Vision.

[10]  Ayoung Kim,et al.  On the uncertainty propagation: Why uncertainty on lie groups preserves monotonicity? , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Paul Timothy Furgale,et al.  Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems , 2014, IEEE Transactions on Robotics.

[12]  Dinesh Atchuthan,et al.  A micro Lie theory for state estimation in robotics , 2018, ArXiv.

[13]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[14]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[15]  Kenth Engø-Monsen,et al.  On the construction of geometric integrators in the RKMK class , 2000 .

[16]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[17]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[18]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[19]  Zvonko Radosavljević,et al.  A study of a target tracking method using Global Nearest Neighbor algorithm , 2006 .

[20]  Audrey Giremus,et al.  Discrete Extended Kalman Filter on Lie groups , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[21]  Taeyoung Lee,et al.  Geometric tracking control of a quadrotor UAV on SE(3) , 2010, 49th IEEE Conference on Decision and Control (CDC).

[22]  Kenth Engø-Monsen,et al.  Partitioned Runge-Kutta methods in Lie-group setting , 2003 .

[23]  Vandana,et al.  Survey of Nearest Neighbor Techniques , 2010, ArXiv.

[24]  Ryan M. Eustice,et al.  Characterizing the Uncertainty of Jointly Distributed Poses in the Lie Algebra , 2019, IEEE Transactions on Robotics.

[25]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[26]  Gregory S. Chirikjian,et al.  Error propagation on the Euclidean group with applications to manipulator kinematics , 2006, IEEE Transactions on Robotics.

[27]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[28]  John Stillwell,et al.  Naive Lie Theory , 2008 .

[29]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[30]  Robin J. Evans,et al.  Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..

[31]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[32]  Gregory S. Chirikjian,et al.  The Banana Distribution is Gaussian: A Localization Study with Exponential Coordinates , 2012, Robotics: Science and Systems.

[33]  Ivan Markovic,et al.  Radar and stereo vision fusion for multitarget tracking on the special Euclidean group , 2016, Robotics Auton. Syst..