Mediterranean seagrass meadows : resilience and contribution to climate change mitigation, a short summary = Les herbiers de Magnoliophytes marines de Méditerranée : résilience et contribution à latténuation des changements climatiques, résumé

This document is a summary of the technical report on the current state of affairs in the Mediterranean basin. It describes the specific characteristics of the Mediterranean Sea and the phenemenon of climate change observed on the scale of this particular region. It then presents five species of Magnoliophyta documented in its waters. Secondly, it describes the impact of climate change on Mediterranean seagrasses, firstly with regard to the pressures to which they are subjected and their resilience to them and, secondly, to the communities associated with the marine environments they form. The last part of the document is devoted to the role played by seagrass meadows in the mitigation of the consequences of climate change, in respect of extreme weather events and the fixation and sequestration of blue carbon. Ce document est un resume du rapport technique relatif a l’etat de la question dans le bassin mediterraneen. Il decrit les specificites de la mer Mediterranee et le phenomene du changement climatique observe a l’echelle de cette region. Il presente ensuite les caracteristiques des cinq especes de Magnoliotphytes presentes dans ses eaux. Dans un second temps, il decrit l’impact du changement climatique sur les herbiers Mediterraneens, d’abord en ce qui concerne les pressions qu’il y exerce et leur resilience a ces pressions, et ensuite en ce qui concerne les communautes qui leur sont associees. La derniere partie du document est consacree au role joue par les herbiers dans l’attenuation des consequences du changement climatique, en prenant en compte les evenements climatiques extremes et la fixation ou la sequestration du carbone bleu.

[1]  R. Michener,et al.  Long-term stability in the production of a NW Mediterranean Posidonia oceanica (L.) Delile meadow , 2010 .

[2]  P. Chambers,et al.  The interaction between water movement, sediment dynamics and submersed macrophytes , 2001, Hydrobiologia.

[3]  M. Verlaque,et al.  Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review , 2009 .

[4]  Claude Millot,et al.  Large warming and salinification of the Mediterranean outflow due to changes in its composition , 2006 .

[5]  S. Vizzini Analysis of the trophic role of Mediterranean seagrasses in marine coastal ecosystems: a review , 2009 .

[6]  P. Chevaldonné,et al.  Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. , 2010, Trends in ecology & evolution.

[7]  S. Levitus,et al.  The Western Mediterranean Deep Water: A proxy for climate change , 2005 .

[8]  A. Charpentiera,et al.  Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon , Southern France , 2008 .

[9]  Yuh-Shan Ho,et al.  Trends in research on global climate change: A Science Citation Index Expanded-based analysis , 2011 .

[10]  C. Bianchi,et al.  Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research , 2000 .

[11]  C. Doswell,et al.  European climatology of severe convective storm environmental parameters: A test for significant tornado events , 2007 .

[12]  Carlos M. Duarte,et al.  Blue carbon - A rapid response assessment , 2009 .

[13]  M. Mateo,et al.  Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget , 1997 .

[14]  M. Favalli,et al.  Lost tsunami , 2006 .

[15]  C. S. Holling,et al.  Ecological Resilience, Biodiversity, and Scale , 1998, Ecosystems.

[16]  Jack J. Middelburg,et al.  Major role of marine vegetation on the oceanic carbon cycle , 2004 .

[17]  P. Bassett-Smith Coral Reefs , 1889, Nature.

[18]  M. Mateo,et al.  Posidonia oceanica ‘banquettes’: a preliminary assessment of the relevance for meadow carbon and nutrients budget , 2003 .

[19]  J. Stachowicz,et al.  Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Manju K. Menon,et al.  Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters , 2010 .

[21]  C. S. Holling,et al.  Resilience, Adaptability and Transformability in Social–ecological Systems , 2004 .

[22]  Sexual reproduction and seed banks of Cymodocea nodosa (Ucria) Ascherson meadows on the southeast Mediterranean coast of Spain , 1993 .

[23]  S. Somot,et al.  The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats , 2010, PloS one.

[24]  M. Plus,et al.  Seagrass (Zostera marina L.) bed recolonisation after anoxia-induced full mortality , 2003 .

[25]  G. Bernard,et al.  Long term changes in Zostera meadows in the Berre lagoon (Provence, Mediterranean Sea) , 2007 .

[26]  P. Nienhuis,et al.  Consumption of eelgrass (Zostera marina) by birds and invertebrates: an annual budget , 1986 .

[27]  Núria Marbà,et al.  Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast:elucidating seagrass decline , 1996 .

[28]  C. Bianchi,et al.  Substitution and phase shift within the Posidonia oceanica seagrass meadows of NW Mediterranean Sea. , 2007 .

[29]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[30]  S. Somot,et al.  Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: impact of climate model resolution , 2011 .

[31]  Frederick T. Short,et al.  World Atlas of Seagrasses , 2003 .

[32]  F. Short,et al.  Leaf reddening in seagrasses , 2010 .

[33]  A. Gücü,et al.  HYDROGRAPHIC INDICATIONS TO UNDERSTAND THEABSENCE OF POSIDONIA OCEANICA IN THE LEVANT SEA EASTERN MEDITERRANEAN , 2006 .

[34]  M. L. Reaka-Kudla,et al.  Coral reefs: sources or sinks of atmospheric CO2? , 1992, Coral Reefs.

[35]  F. Touratier,et al.  Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea , 2011 .

[36]  M. Mateo,et al.  Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica , 1994 .

[37]  O. Serrano,et al.  Seasonal response of Posidonia oceanica to light disturbances , 2011 .

[38]  B. Galil,et al.  A Sea Change — Exotics in the Eastern Mediterranean Sea , 2002 .

[39]  G. Grimsditch,et al.  The Management of Natural Coastal Carbon Sinks , 2009 .

[40]  Sandrine,et al.  LARGE-SCALE DISTURBANCES , REGIME SHIFT AND RECOVERY IN LITTORAL SYSTEMS SUBJECT TO BIOLOGICAL INVASIONS , 2006 .

[41]  M. Mateo,et al.  Carbon flux in seagrass ecosystems , 2006 .

[42]  Núria Marbà,et al.  Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality , 2009 .

[43]  C. Sheppard Seas at the Millennium: An Environmental Evaluation , 2000 .

[44]  O. Canziani,et al.  Climate change 2007: synthesis report. Summary for policymakers , 2007 .

[45]  M. Mateo,et al.  The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink , 1994 .

[46]  F. Giorgi,et al.  Climate change hot‐spots , 2006 .

[47]  R. Pachauri Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report , 2008 .

[48]  V. Parravicini,et al.  Human influence on seagrass habitat fragmentation in NW Mediterranean Sea , 2010 .

[49]  V. Pasqualini,et al.  Effect of a newly set up wastewater-treatment plant on a marine phanerogam seagrass bed: A medium-term monitoring program , 2002 .

[50]  Carrie V. Kappel,et al.  Non‐linearity in ecosystem services: temporal and spatial variability in coastal protection , 2009 .