Fractal dimension and logarithmic loss unpredictability
暂无分享,去创建一个
[1] Neri Merhav,et al. Universal Prediction , 1998, IEEE Trans. Inf. Theory.
[2] Meir Feder,et al. Gambling using a finite state machine , 1991, IEEE Trans. Inf. Theory.
[3] Ludwig Staiger,et al. A Tight Upper Bound on Kolmogorov Complexity and Uniformly Optimal Prediction , 1998, Theory of Computing Systems.
[4] Boris Ryabko,et al. The Complexity and Effectiveness of Prediction Algorithms , 1994, J. Complex..
[5] Jack H. Lutz,et al. Dimension in complexity classes , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.
[6] Neri Merhav,et al. Universal prediction of individual sequences , 1992, IEEE Trans. Inf. Theory.
[7] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[8] Lance Fortnow,et al. Prediction and dimension , 2002, J. Comput. Syst. Sci..
[9] Boris Ryabko. The nonprobabilistic approach to learning the best prediction , 2001, Electron. Trans. Artif. Intell..
[10] Claus-Peter Schnorr,et al. Endliche Automaten und Zufallsfolgen , 1972, Acta Informatica.
[11] Jack H. Lutz,et al. Finite-state dimension , 2001, Theor. Comput. Sci..
[12] F. Hausdorff. Dimension und äußeres Maß , 1918 .