EXISTENCE AND UNIQUENESS TO THE CAUCHY PROBLEM FOR LINEAR AND SEMILINEAR PARABOLIC EQUATIONS WITH LOCAL CONDITIONS

We consider the Cauchy problem in R for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Résumé. Nous considérons le problème de Cauchy dans R pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale. Introduction In the Theory of Stochastic Control, one of the techniques for studying the value function is the Dynamic Programming Principle and the Hamilton-Jacobi-Bellman equations (HJB equations). Generally, HJB equations are nonlinear partial differential equations. In many interesting problems (see e.g. [42], [37], [19], [9], [28], [29] and [39]) the HJB equation can be reduced to an equation of the form

[1]  W. Bodanko Sur le problème de Cauchy et les problèmes de Fourier pour les équations paraboliques dans un domaine non borné , 1966 .

[2]  D. Aronson,et al.  Parabolic equations with unbounded coefficients , 1967 .

[3]  P. Besala On the existence of a fundamental solution for a parabolic differential equation with unbounded coefficients , 1975 .

[4]  Lüping Chen Note on asymptotic behavior of weak solutions of the Cauchy problem for some parabolic equations with unbounded coefficients , 1979 .

[5]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[6]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[7]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[8]  N. Krylov Introduction to the theory of diffusion processes , 1994 .

[9]  A. Lunardi,et al.  On the Ornstein-Uhlenbeck Operator in Spaces of Continuous Functions , 1995 .

[10]  Elliptic and parabolic equations in with coefficients having polynomial growth , 1996 .

[11]  S. Cerrai Some results for second order elliptic operators having unbounded coefficients , 1998 .

[12]  A. Lunardi Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $ℝ^{n}$ , 1998 .

[13]  S. Cerrai Analytic Semigroups and Degenerate Elliptic Operators with Unbounded Coefficients: A Probabilistic Approach , 2000 .

[14]  G. Prato,et al.  Elliptic Operators on Rd with Unbounded Coefficients , 2001 .

[15]  Thaleia Zariphopoulou,et al.  A solution approach to valuation with unhedgeable risks , 2001, Finance Stochastics.

[16]  H. Pham,et al.  Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints , 2002 .

[17]  S. Kruse,et al.  Parabolic Differential Equations with Unbounded Coefficients – A Generalization of the Parametrix Method , 2002 .

[18]  Daniel Hernández-Hernández,et al.  An optimal consumption model with stochastic volatility , 2003, Finance Stochastics.

[19]  G. Metafune,et al.  Gradient estimates for Dirichlet parabolic problems in unbounded domains , 2004 .

[20]  M. Bertoldi,et al.  Gradient estimates in parabolic problems with unbounded coefficients , 2004 .

[21]  The Tradeoff between Consumption and Investment in Incomplete Financial Markets , 2005 .

[22]  Netzahualcoyotl Castañeda-Leyva,et al.  Optimal Consumption-Investment Problems in Incomplete Markets with Stochastic Coefficients , 2005, SIAM J. Control. Optim..

[23]  L. Lorenzi,et al.  Estimates of the derivatives for parabolic operators with unbounded coefficients , 2005 .

[24]  D. Hernández-Hernández,et al.  Robust utility maximization in a stochastic factor model , 2006 .

[25]  D. Hernández-Hernández,et al.  A control approach to robust utility maximization with logarithmic utility and time-consistent penalties , 2007 .

[26]  L. Lorenzi,et al.  Gradient estimates for parabolic problems with unbounded coefficients in non convex unbounded domains , 2007 .

[27]  A. Rhandi,et al.  Second-order parabolic equations with unbounded coefficients in exterior domains , 2007 .

[28]  Alexander Schied,et al.  Robust optimal control for a consumption-investment problem , 2008, Math. Methods Oper. Res..

[29]  J. Janssen,et al.  Deterministic and Stochastic Optimal Control , 2013 .

[30]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .