Helical silver(I)-glutathione biocoordination polymer nanofibres

Helical nanofibres of silver(I)-glutathione (Ag-GSH) biocoordination polymer (BCP) are fabricated by introducing dimethyl sulfoxide into the mixture solution of Ag+ ions and l-GSH molecules. The prepared BCP nanofibres show hierarchical helical structures, which are constructed via twisting of small fibres. Water-soluble helices could be further cross-linked with Ca2+ ions to form a well-dispersed aqueous suspension. When gold nanorods are adsorbed onto these helical nanofibres, the unique plasmon-induced circular dichroism characteristic is observed in the region of the local surface plasmon resonance of gold nanorods. This type of chiroptical metamaterials may have promising applications in nonlinear optics, negative refraction and biosensing.

[1]  G. Markovich,et al.  Synthesis of Chiral Silver Clusters on a DNA Template , 2010 .

[2]  U. Mueller,et al.  Industrial Applications of Metal—Organic Frameworks , 2009 .

[3]  Thomas Bürgi,et al.  Chiral gold nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Mark D. Allendorf,et al.  Luminescent Metal—Organic Frameworks , 2009 .

[5]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[6]  Luis M Liz-Marzán,et al.  Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. , 2011, Angewandte Chemie.

[7]  Alexander M. Spokoyny,et al.  Infinite Coordination Polymer Nano‐ and Microparticle Structures , 2009 .

[8]  E. W. Meijer,et al.  Preparation and characterization of helical self-assembled nanofibers. , 2009, Chemical Society reviews.

[9]  K. G. Thomas,et al.  Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. , 2010, Journal of the American Chemical Society.

[10]  O. Ikkala,et al.  Hierarchical self-assembly in polymeric complexes: towards functional materials. , 2004, Chemical communications.

[11]  Yan Gao,et al.  Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. , 2012, Journal of the American Chemical Society.

[12]  Jihyun An,et al.  Metal-biomolecule frameworks (MBioFs). , 2011, Chemical communications.

[13]  M. Kanatzidis,et al.  A Polar and Chiral Indium Telluride Featuring Supertetrahedral T2 Clusters and Nonlinear Optical Second Harmonic Generation. , 2009 .

[14]  Gil Markovich,et al.  Chirality of silver nanoparticles synthesized on DNA. , 2006, Journal of the American Chemical Society.

[15]  I. Dance,et al.  Layered structure of crystalline compounds silver thiolates (AgSR) , 1991 .

[16]  A. Parikh,et al.  CHARACTERIZATION OF CHAIN MOLECULAR ASSEMBLIES IN LONG-CHAIN, LAYERED SILVER THIOLATES : A JOINT INFRARED SPECTROSCOPY AND X-RAY DIFFRACTION STUDY , 1999 .

[17]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[18]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[19]  J. Fallas,et al.  Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. , 2011, Nature chemistry.

[20]  Demin Liu,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[21]  Wenbin Lin,et al.  Modular synthesis of functional nanoscale coordination polymers. , 2009, Angewandte Chemie.

[22]  C. Li,et al.  Silver(I)–glutathione biocoordination polymer hydrogel: effective antibacterial activity and improved cytocompatibility , 2011 .

[23]  David K. Smith,et al.  Lost in Translation? Chirality Effects in the Self‐Assembly of Nanostructured Gel‐Phase Materials , 2009 .

[24]  W. Qian,et al.  Vibrational analysis of glutathione , 1994, Biopolymers.

[25]  Liguang Xu,et al.  Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. , 2010, Angewandte Chemie.

[26]  Yun Yan,et al.  Hierarchical assemblies of coordination supramolecules , 2010 .

[27]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[28]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[29]  Wenlong Cheng,et al.  DNA-based plasmonic nanoarchitectures: from structural design to emerging applications. , 2012, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[30]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[31]  Jiang Zhou,et al.  Metal-driven hierarchical self-assembled one-dimensional nanohelices. , 2009, Nano letters.

[32]  Lei Jiang,et al.  Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks. , 2010, Journal of the American Chemical Society.

[33]  Gabriel Shemer,et al.  Plasmon-resonance-enhanced absorption and circular dichroism. , 2008, Angewandte Chemie.

[34]  Z. Tang,et al.  Nanoscale biocoordination polymers: novel materials from an old topic. , 2012, Chemistry.

[35]  M. Hepel,et al.  Ion-gating phenomena of self-assembling glutathione films on gold piezoelectrodes , 2003 .

[36]  D. Amabilino,et al.  Amino acid based metal-organic nanofibers. , 2009, Journal of the American Chemical Society.

[37]  Kwangnak Koh,et al.  Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy , 2011 .

[38]  O. Yamauchi,et al.  Metal–amino acid chemistry. Weak interactions and related functions of side chain groups , 2002 .

[39]  R. Nolte,et al.  Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly , 2003 .