Code generation in the polyhedral model is easier than you think
暂无分享,去创建一个
[1] P. Feautrier. Parametric integer programming , 1988 .
[2] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[3] Yves Robert,et al. Mapping Uniform Loop Nests Onto Distributed Memory Architectures , 1993, Parallel Comput..
[4] W. Kelly,et al. Code generation for multiple mappings , 1995, Proceedings Frontiers '95. The Fifth Symposium on the Frontiers of Massively Parallel Computation.
[5] J. Ramanujam,et al. Beyond unimodular transformations , 1995, The Journal of Supercomputing.
[6] H. Le Verge,et al. A Note on Chernikova's algorithm , 1992 .
[7] Keshav Pingali,et al. A Singular Loop Transformation Framework Based on Non-Singular Matrices , 1992, LCPC.
[8] Martin Griebl,et al. Code generation in the polytope model , 1998, Proceedings. 1998 International Conference on Parallel Architectures and Compilation Techniques (Cat. No.98EX192).
[9] Jingling Xue. Automating Non-Unimodular Loop Transformations for Massive Parallelism , 1994, Parallel Comput..
[10] Corinne Ancourt,et al. Scanning polyhedra with DO loops , 1991, PPOPP '91.
[11] Doran Wilde,et al. Loop nest synthesis using the polyhedral library , 1994 .
[12] Doran Wilde,et al. A LIBRARY FOR DOING POLYHEDRAL OPERATIONS , 2000 .
[13] Philippe Clauss. Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials: Applications to Analyze and Transform Scientific Programs , 1996, International Conference on Supercomputing.
[14] Paul Feautrier,et al. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time , 1992, International Journal of Parallel Programming.
[15] Jingling Xue. Transformations of Nested Loops with Non-Convex Iteration Spaces , 1996, Parallel Comput..
[16] Youcef Bouchebaba. Optimisation des transferts de données pour le traitement du signal : pavage, fusion et réallocation des tableaux , 2002 .
[17] QuilleréFabien,et al. Generation of Efficient Nested Loops from Polyhedra , 2000 .
[18] Cédric Bastoul,et al. Efficient code generation for automatic parallelization and optimization , 2003, Second International Symposium on Parallel and Distributed Computing, 2003. Proceedings..
[19] Nicolas Halbwachs,et al. Automatic discovery of linear restraints among variables of a program , 1978, POPL.
[20] Paul Feautrier,et al. Dataflow analysis of array and scalar references , 1991, International Journal of Parallel Programming.
[21] Albert Cohen,et al. Putting Polyhedral Loop Transformations to Work , 2003, LCPC.
[22] Marc Le Fur. Parcours de polyèdre paramétré avec l'élimination de Fourier-Motzkin , 1994 .
[23] Philippe Clauss,et al. Counting solutions to linear and nonlinear constraints through Ehrhart polynomials: applications to analyze and transform scientific programs , 1996 .
[24] Paul Feautrier,et al. Construction of Do Loops from Systems of Affine Constraints , 1995, Parallel Process. Lett..
[25] David L. Kuck,et al. The Structure of Computers and Computations , 1978 .
[26] Pierre Boulet,et al. Loop Parallelization Algorithms: From Parallelism Extraction to Code Generation , 1998, Parallel Comput..
[27] Martin Griebl,et al. Index Set Splitting , 2000, International Journal of Parallel Programming.
[28] Paul Feautrier,et al. Some efficient solutions to the affine scheduling problem. I. One-dimensional time , 1992, International Journal of Parallel Programming.