Anthropogenic warming exacerbates European soil moisture droughts

[1]  Niels Drost,et al.  PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model , 2017, Geoscientific Model Development.

[2]  V. Masson‐Delmotte,et al.  Estimating Changes in Global Temperature since the Preindustrial Period , 2017 .

[3]  Adrian E. Raftery,et al.  Less Than 2 °C Warming by 2100 Unlikely , 2017, Nature climate change.

[4]  J. Smerdon,et al.  Projected drought risk in 1.5°C and 2°C warmer climates , 2017 .

[5]  Lukas Gudmundsson,et al.  Regional scaling of annual mean precipitation and water availability with global temperature change , 2017 .

[6]  Harsh L. Shah,et al.  Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins , 2017, Climatic Change.

[7]  J. Rogelj,et al.  Characterizing half‐a‐degree difference: a review of methods for identifying regional climate responses to global warming targets , 2017 .

[8]  A. Berg,et al.  Divergent surface and total soil moisture projections under global warming , 2017 .

[9]  P. Yoon Proton temperature relaxation in the solar wind by combined collective and collisional processes , 2016 .

[10]  W. Cramer,et al.  Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems , 2016, Science.

[11]  Sabine Attinger,et al.  The impact of standard and hard‐coded parameters on the hydrologic fluxes in the Noah‐MP land surface model , 2016 .

[12]  H. V. Van Lanen,et al.  Hydrology needed to manage droughts: the 2015 European case , 2016 .

[13]  Richard G. Jones,et al.  How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? , 2016 .

[14]  Jianping Huang,et al.  Accelerated dryland expansion under climate change , 2016 .

[15]  S. Seneviratne,et al.  Allowable CO2 emissions based on regional and impact-related climate targets , 2016, Nature.

[16]  B. Cook,et al.  Unprecedented 21st century drought risk in the American Southwest and Central Plains , 2015, Science Advances.

[17]  H.A.J. van Lanen,et al.  Global hydrological droughts in the 21st century under a changing hydrological regime , 2014 .

[18]  D. Lobell,et al.  Adaptation potential of European agriculture in response to climate change , 2014 .

[19]  R. Vautard,et al.  The European climate under a 2 °C global warming , 2014 .

[20]  S. Hagemann,et al.  Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment , 2013, Proceedings of the National Academy of Sciences.

[21]  F. Piontek,et al.  The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework , 2013, Proceedings of the National Academy of Sciences.

[22]  F. Piontek,et al.  A trend-preserving bias correction – the ISI-MIP approach , 2013 .

[23]  V. Brovkin,et al.  Impact of soil moisture‐climate feedbacks on CMIP5 projections: First results from the GLACE‐CMIP5 experiment , 2013 .

[24]  Luis Samaniego,et al.  Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany , 2013 .

[25]  Sabine Attinger,et al.  Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations , 2013 .

[26]  E. Wood,et al.  Little change in global drought over the past 60 years , 2012, Nature.

[27]  P. Cox,et al.  Quantifying future climate change , 2012 .

[28]  Kevin W. Manning,et al.  The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements , 2011 .

[29]  T. Carter,et al.  Crop-climate models need an overhaul , 2011 .

[30]  S. Attinger,et al.  Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale , 2010 .

[31]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[32]  P. Jones,et al.  A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006 , 2008 .

[33]  J. Robine,et al.  Death toll exceeded 70,000 in Europe during the summer of 2003. , 2008, Comptes rendus biologies.

[34]  P. Ciais,et al.  Europe-wide reduction in primary productivity caused by the heat and drought in 2003 , 2005, Nature.

[35]  Caspar A. Mücher,et al.  A climatic stratification of the environment of Europe , 2005 .

[36]  K. Trenberth,et al.  A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming , 2004 .

[37]  S. Goddard,et al.  A Self-Calibrating Palmer Drought Severity Index , 2004 .

[38]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[39]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[40]  E. Sutanudjaja Interactive comment on “ PCR-GLOBWB 2 : a 5 arc-minute global hydrological and water resources model ” , 2018 .

[41]  Niels Drost,et al.  PCR-GLOBWB 2: a 5 arc-minute global hydrologicaland water resources model , 2017 .

[42]  Sabine Attinger,et al.  Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins , 2016 .

[43]  P. Jones,et al.  Global warming and changes in drought , 2014 .

[44]  A. Dai Increasing drought under global warming in observations and models , 2013 .

[45]  Sonia I. Seneviratne,et al.  Observational evidence for soil-moisture impact on hot extremes in southeastern Europe , 2011 .

[46]  H. Dumez,et al.  The European case , 2000 .