Neuron cilia constrain glial regulators to microdomains around distal neurons

Each glia interacts with multiple neurons, but the fundamental logic of whether it interacts with all equally remains unclear. We find that a single sense-organ glia modulates different contacting neurons distinctly. To do so, it partitions regulatory cues into molecular microdomains at specific neuron contact-sites, at its delimited apical membrane. For one glial cue, K/Cl transporter KCC-3, microdomain-localization occurs through a two-step, neuron-dependent process. First, KCC-3 shuttles to glial apical membranes. Second, some contacting neuron cilia repel it, rendering it microdomain-localized around one distal neuron-ending. KCC-3 localization tracks animal aging, and while apical localization is sufficient for contacting neuron function, microdomain-restriction is required for distal neuron properties. Finally, we find the glia regulates its microdomains largely independently. Together, this uncovers that glia modulate cross-modal sensor processing by compartmentalizing regulatory cues into microdomains. Glia across species contact multiple neurons and localize disease-relevant cues like KCC-3. Thus, analogous compartmentalization may broadly drive how glia regulate information processing across neural circuits.

[1]  A. Singhvi,et al.  Epithelia delimits glial apical polarity against mechanical shear to maintain glia-neuron - architecture , 2022, bioRxiv.

[2]  P. Sengupta,et al.  xbx-4, a homolog of the Joubert syndrome gene FAM149B1, acts via the CCRK and RCK kinase cascade to regulate cilia morphology , 2021, Current Biology.

[3]  Ji Eun Lee,et al.  Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases , 2021, Frontiers in Neuroscience.

[4]  P. Laurent,et al.  Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons , 2021, eLife.

[5]  S. Ray,et al.  Charging Up the Periphery: Glial Ionic Regulation in Sensory Perception , 2021, Frontiers in Cell and Developmental Biology.

[6]  A. Cardona,et al.  Drosophila ßHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil , 2021, Nature Communications.

[7]  P. Sengupta,et al.  xbx-4, a homolog of the Joubert syndrome gene FAM149B1, acts via the CCRK and MAK kinase cascade to regulate cilia morphology , 2021, bioRxiv.

[8]  Mary A. Logan,et al.  Engulfed by Glia: Glial Pruning in Development, Function, and Injury across Species , 2021, The Journal of Neuroscience.

[9]  S. Duan,et al.  Sensory Glia Detect Repulsive Odorants and Drive Olfactory Adaptation , 2020, Neuron.

[10]  Shai Shaham,et al.  Glia-Neuron Interactions in Caenorhabditis elegans. , 2019, Annual review of neuroscience.

[11]  Peyman Golshani,et al.  Reducing Astrocyte Calcium Signaling In Vivo Alters Striatal Microcircuits and Causes Repetitive Behavior , 2018, Neuron.

[12]  Isabel I. C. Low,et al.  Morphogenesis of neurons and glia within an epithelium , 2018, Development.

[13]  M. Goodman,et al.  The extraordinary AFD thermosensor of C. elegans , 2018, Pflügers Archiv - European Journal of Physiology.

[14]  Christophe Leterrier,et al.  The Axon Initial Segment: An Updated Viewpoint , 2018, The Journal of Neuroscience.

[15]  Nicola J. Allen,et al.  Cell Biology of Astrocyte-Synapse Interactions , 2017, Neuron.

[16]  K. Zuloaga,et al.  Influence of Mechanical Stimuli on Schwann Cell Biology , 2017, Front. Cell. Neurosci..

[17]  Yong Ho Kim,et al.  Astrocytic Neuroligins Control Astrocyte Morphogenesis and Synaptogenesis , 2017, Nature.

[18]  O. Hobert,et al.  Morphological Diversity of C. elegans Sensory Cilia Instructed by the Differential Expression of an Immunoglobulin Domain Protein , 2017, Current Biology.

[19]  P. Sengupta Cilia and sensory signaling: The journey from “animalcules” to human disease , 2017, PLoS biology.

[20]  Denis Wirtz,et al.  Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes , 2017, Neuron.

[21]  E. Delpire,et al.  The KCC3 cotransporter as a therapeutic target for peripheral neuropathy , 2017, Expert opinion on therapeutic targets.

[22]  S. Herculano‐Houzel,et al.  The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting , 2016, The Journal of comparative neurology.

[23]  Yun Lu,et al.  PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans. , 2016, Cell reports.

[24]  K. Lechtreck IFT-Cargo Interactions and Protein Transport in Cilia. , 2015, Trends in biochemical sciences.

[25]  Beth Stevens,et al.  Do glia drive synaptic and cognitive impairment in disease? , 2015, Nature Neuroscience.

[26]  B. Khakh,et al.  Diversity of astrocyte functions and phenotypes in neural circuits , 2015, Nature Neuroscience.

[27]  S. Shaham Glial development and function in the nervous system of Caenorhabditis elegans. , 2015, Cold Spring Harbor perspectives in biology.

[28]  S. Duan,et al.  In Vivo Tactile Stimulation-Evoked Responses in Caenorhabditis elegans Amphid Sheath Glia , 2015, PloS one.

[29]  J. A. Payne,et al.  Cation-chloride cotransporters in neuronal development, plasticity and disease , 2014, Nature Reviews Neuroscience.

[30]  D. Alessi,et al.  The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters , 2014, Science Signaling.

[31]  L. Richards,et al.  Loss of Neuronal Potassium/Chloride Cotransporter 3 (KCC3) Is Responsible for the Degenerative Phenotype in a Conditional Mouse Model of Hereditary Motor and Sensory Neuropathy Associated with Agenesis of the Corpus Callosum , 2012, The Journal of Neuroscience.

[32]  M. J. Mahon Apical membrane segregation of phosphatidylinositol-4,5-bisphosphate influences parathyroid hormone 1 receptor compartmental signaling and localization via direct regulation of ezrin in LLC-PK1 cells. , 2011, Cellular signalling.

[33]  S. Shaham,et al.  The Glia of Caenorhabditis elegans , 2011, Glia.

[34]  Shigeki Watanabe,et al.  Opposing Activities of LIT-1/NLK and DAF-6/Patched-Related Direct Sensory Compartment Morphogenesis in C. elegans , 2011, PLoS biology.

[35]  G. Rouleau,et al.  Transit Defect of Potassium-Chloride Co-transporter 3 Is a Major Pathogenic Mechanism in Hereditary Motor and Sensory Neuropathy with Agenesis of the Corpus Callosum* , 2011, The Journal of Biological Chemistry.

[36]  Stephen J. Smith,et al.  Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis , 2009, Cell.

[37]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[38]  R. Nehme,et al.  egl-1: a key activator of apoptotic cell death in C. elegans , 2008, Oncogene.

[39]  Yun Lu,et al.  The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in Caenorhabditis elegans , 2008, Genetics.

[40]  S. Mitani,et al.  Caenorhabditis elegans WNK–STE20 pathway regulates tube formation by modulating ClC channel activity , 2008, EMBO reports.

[41]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[42]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[43]  M. Bergeron,et al.  Homooligomeric and Heterooligomeric Associations between K+-Cl– Cotransporter Isoforms and between K+-Cl– and Na+-K+-Cl– Cotransporters* , 2007, Journal of Biological Chemistry.

[44]  B. Margolis,et al.  Tight junctions and cell polarity. , 2006, Annual review of cell and developmental biology.

[45]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[46]  Olaf Strauss,et al.  The retinal pigment epithelium in visual function. , 2005, Physiological reviews.

[47]  E. Perens,et al.  C. elegans daf-6 encodes a patched-related protein required for lumen formation. , 2005, Developmental cell.

[48]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[49]  C. Pfeffer,et al.  Loss of K‐Cl co‐transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold , 2003, The EMBO journal.

[50]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[51]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[52]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[53]  C. Rongo,et al.  DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. , 2001, Molecular biology of the cell.

[54]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[55]  M. Labouesse,et al.  Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. , 2001, Journal of cell science.

[56]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[57]  F. Slack,et al.  Expression and function of members of a divergent nuclear receptor family in Caenorhabditis elegans. , 1999, Developmental biology.

[58]  B. Hughes,et al.  Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram , 1997, Progress in Retinal and Eye Research.

[59]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[60]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[61]  Cornelia I. Bargmann,et al.  The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily , 1994, Cell.

[62]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[63]  B. Welch The structure , 1992 .

[64]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[65]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[66]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[67]  Susan J. Brown,et al.  Sensory control of dauer larva formation in Caenorhabditis elegans , 1981, The Journal of comparative neurology.

[68]  K. Mykytyn,et al.  Neuronal Primary Cilia: An Underappreciated Signaling and Sensory Organelle in the Brain , 2014, Neuropsychopharmacology.

[69]  L. Bianchi,et al.  Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. , 2012, Journal of neurophysiology.

[70]  S. Shaham,et al.  Glia Are Essential for Sensory Organ Function in C. elegans , 2008, Science.

[71]  Yun Lu,et al.  A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. , 2007, Developmental cell.

[72]  J E Sulston,et al.  Neuronal cell lineages in the nematode Caenorhabditis elegans. , 1983, Cold Spring Harbor symposia on quantitative biology.