A novel multi-walled carbon nanotube-based biosensor for glucose detection.

The bioelectrochemical characteristics of a novel multi-walled carbon nanotube (MWNT)-based biosensor for glucose detection are studied and compared with those of glassy carbon (GC)-based biosensor. The MWNT-based biosensor exhibits a strong glucose response at applied potentials of 0.65 and 0.45 V versus Ag/AgCl, respectively, while GC-based biosensor shows a weak glucose response at 0.65 V and no response at 0.45 V. Besides, the MWNT-based biosensor shows a high stability of 86.7% of the initial activity to glucose after four-month storage, much higher than 37.2%, the corresponding value for a GC-based biosensor. The detection mechanism of the MWNT-based biosensor is also discussed in detail.

[1]  Richard J. Coles,et al.  Protein electrochemistry at carbon nanotube electrodes , 1997 .

[2]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[3]  G. Harsányi,et al.  Sensors in Biomedical Applications: Fundamentals, Technology and Applications , 2000 .

[4]  Raluca-Ioana Stefan,et al.  Electrochemical Sensors in Bioanalysis , 2001 .

[5]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[6]  Pulickel M. Ajayan,et al.  Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes , 2001 .

[7]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[8]  Wisniewski,et al.  Methods for reducing biosensor membrane biofouling. , 2000, Colloids and surfaces. B, Biointerfaces.

[9]  G. Rivas,et al.  Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors. , 2003, Biosensors & bioelectronics.

[10]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[11]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[12]  Pulickel M. Ajayan,et al.  Carbon nanotube electrode for oxidation of dopamine , 1996 .

[13]  Willy M. C. Sansen,et al.  Biosensors: Microelectrochemical Devices , 1992 .

[14]  N. Chaniotakis,et al.  Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon , 2000 .

[15]  G. Rivas,et al.  Carbon nanotubes paste electrode , 2003 .

[16]  Ray H. Baughman,et al.  Direct electron transfer of glucose oxidase on carbon nanotubes , 2002 .

[17]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[18]  Mei Gao,et al.  Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes , 2003 .

[19]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[20]  N. Chaniotakis,et al.  Novel carbon materials in biosensor systems. , 2003, Biosensors & bioelectronics.

[21]  S. Wiberley,et al.  Introduction to infrared and Raman spectroscopy , 1965 .

[22]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[23]  S. Yoon,et al.  Synthesis and characterization of MWNTs with narrow diameter over nickel catalyst by MPCVD , 2003 .

[24]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[25]  Arben Merkoçi,et al.  Configurations used in the design of screen-printed enzymatic biosensors. A review , 2000 .

[26]  Sophie Demoustier-Champagne,et al.  Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. , 2003, Biosensors & bioelectronics.

[27]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[28]  B. J. White,et al.  Novel optical solid-state glucose sensor using immobilized glucose oxidase. , 2002, Biochemical and biophysical research communications.

[29]  D. Lin-Vien The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules , 1991 .