WindowWall

As architects usually decide on the shape and look of windows during the design of buildings, opportunities for interactive windows have not been systematically explored yet. In this work, we extend the vision of sustainable and comfortable adaptive buildings using interactive smart windows. We systematically explore the design space of interactive windows to chart requirements, constraints, and challenges. To that end, we built proof-of-concept prototypes of smart windows with fine-grained control of transparency. In two studies, we explored user attitudes towards interactive windows and elicited control methods. We found that users understand and see potential for interactive windows at home. We provide specific usage contexts and specify interactions that may facilitate domestic applications. Our work illustrates the concept of interactive smart windows and provides insights regarding their design, development, and user controls for adaptive walls. We identify design dimensions and challenges to stimulate further development in the domain of adaptive buildings.

[1]  Yvonne Rogers,et al.  Enticing People to Interact with Large Public Displays in Public Spaces , 2003, INTERACT.

[2]  Federico Casalegno,et al.  Interaction design with building facades , 2010, TEI '10.

[3]  Nemanja Memarovic,et al.  Scheduling Interactive and Concurrently Running Applications in Pervasive Display Networks , 2014, PerDis.

[4]  Eva Hornecker,et al.  Modifying Gesture Elicitation: Do Kinaesthetic Priming and Increased Production Reduce Legacy Bias? , 2016, Tangible and Embedded Interaction.

[5]  Andreas Butz,et al.  StaTube: facilitating state management in instant messaging systems , 2012, Tangible and Embedded Interaction.

[6]  Florian Alt,et al.  ShapelineGuide: Teaching Mid-Air Gestures for Large Interactive Displays , 2018, PerDis.

[7]  Daniel Vogel,et al.  Interactive public ambient displays: transitioning from implicit to explicit, public to personal, interaction with multiple users , 2004, UIST '04.

[8]  Kaisa Väänänen,et al.  Exploring the augmented home window: user perceptions of the concept , 2014, MUM.

[9]  Andreas Butz,et al.  Multi-user interaction on media facades through live video on mobile devices , 2011, CHI.

[10]  Mikkel Rønne Jakobsen,et al.  An exploratory study of how abundant display space may support data analysis , 2012, NordiCHI.

[11]  Moritz Behrens,et al.  The Sentiment Cocoon: A Case Study of Media Architectural Interfaces , 2018 .

[12]  Richard Corbett,et al.  AROMA: ambient awareness through olfaction in a messaging application , 2004, ICMI '04.

[13]  Florian Alt,et al.  Autopoiesic Content: A Conceptual Model for Enabling Situated Self-generative Content for Public Displays , 2011 .

[14]  Christopher Miller,et al.  Olfoto: designing a smell-based interaction , 2006, CHI.

[15]  Susanne Seitinger,et al.  Over the rainbow: information design for low-resolution urban displays , 2014, MAB '14.

[16]  Andreas Butz,et al.  Is Anyone Looking? Mitigating Shoulder Surfing on Public Displays through Awareness and Protection , 2014, PerDis.

[17]  Timo Ojala,et al.  MobiSpray: mobile phone as virtual spray can for painting BIG anytime anywhere on anything , 2009, SIGGRAPH '09.

[18]  Mathieu Nancel,et al.  Myopoint: Pointing and Clicking Using Forearm Mounted Electromyography and Inertial Motion Sensors , 2015, CHI.

[19]  Alireza Sahami Shirazi,et al.  Digifieds: insights into deploying digital public notice areas in the wild , 2011, MUM.

[20]  Alireza Sahami Shirazi,et al.  Interaction techniques for creating and exchanging content with public displays , 2013, CHI.

[21]  Radu-Daniel Vatavu,et al.  Between-Subjects Elicitation Studies: Formalization and Tool Support , 2016, CHI.

[22]  Werner Sobek,et al.  Potentiale strukturierter, schaltbarer Verglasungen: Potentiale strukturierter, schaltbarer Verglasungen , 2016 .

[23]  Denis Lalanne,et al.  Deconstructing human-building interaction , 2016, Interactions.

[24]  Ann Blandford,et al.  Qualitative HCI Research: Going Behind the Scenes , 2016, Synthesis Lectures on Human-Centered Informatics.

[25]  Jeffrey Huang,et al.  The swisshouse: an inhabitable interface for connecting nations , 2004, DIS '04.

[26]  Radu-Daniel Vatavu,et al.  User-defined gestures for free-hand TV control , 2012, EuroITV.

[27]  Marc Langheinrich,et al.  Personalisation and privacy in future pervasive display networks , 2014, CHI.

[28]  Daniel J. Wigdor,et al.  Métamorphe: augmenting hotkey usage with actuated keys , 2013, CHI.

[29]  Albrecht Schmidt,et al.  The drift table: designing for ludic engagement , 2004, CHI EA '04.

[30]  M. Sheelagh T. Carpendale,et al.  The LunchTable: a multi-user, multi-display system for information sharing in casual group interactions , 2012, PerDis '12.

[31]  Christina Boucher,et al.  Exploring Non-touchscreen Gestures for Smartwatches , 2016, CHI.

[32]  Alexander Wiethoff,et al.  Blinking Lights and Other Revelations: Experiences Designing Hybrid Media Façades , 2015, PerDis.

[33]  Roel Vertegaal,et al.  AuraOrb: using social awareness cues in the design of progressive notification appliances , 2006, OZCHI '06.

[34]  Radu-Daniel Vatavu,et al.  Formalizing Agreement Analysis for Elicitation Studies: New Measures, Significance Test, and Toolkit , 2015, CHI.

[35]  Meredith Ringel Morris,et al.  User-defined gestures for surface computing , 2009, CHI.

[36]  Alex Olwal,et al.  ASTOR: an autostereoscopic optical see-through augmented reality system , 2005, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05).

[37]  Niels Henze,et al.  Free-hand gestures for music playback: deriving gestures with a user-centred process , 2010, MUM.

[38]  Avni Argun,et al.  Drawing Transparencies: ‘Responsible Responsiveness’ in Spaces Through Organic Electrochromism , 2009, eCAADe proceedings.

[39]  Anthony Tang,et al.  Scale Impacts Elicited Gestures for Manipulating Holograms: Implications for AR Gesture Design , 2018, Conference on Designing Interactive Systems.

[40]  Hiroyuki Ohno,et al.  An optical see-through display for mutual occlusion with a real-time stereovision system , 2001, Comput. Graph..

[41]  Kim Halskov,et al.  Designing Media Architecture: Tools and Approaches for Addressing the Main Design Challenges , 2016, CHI.

[42]  Mikkel Rønne Jakobsen,et al.  Eliciting Mid-Air Gestures for Wall-Display Interaction , 2016, NordiCHI.

[43]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[44]  Jun Rekimoto,et al.  Ambient touch: designing tactile interfaces for handheld devices , 2002, UIST '02.

[45]  Joanne Moore,et al.  Tellybox: Nine Speculative Prototypes For Future TV , 2017, TVX.

[46]  Roy Rodenstein Employing the periphery: the window as interface , 1999, CHI EA '99.

[47]  Stefan Schneegaß,et al.  Posture Sleeve: Using Smart Textiles for Public Display Interactions , 2018, CHI Extended Abstracts.

[48]  Uta Hinrichs,et al.  Digital surfaces in libraries , 2013, ITS.

[49]  Thomas Grechenig,et al.  Towards a Taxonomy for Ambient Information Systems , 2007, Ambient Information Systems.

[50]  Pierre Dillenbourg,et al.  Interactive tabletops in education , 2011, Int. J. Comput. Support. Collab. Learn..

[51]  Oskar Juhlin,et al.  Experiencing Liveness of a Cherished Place in the Home , 2015, TVX.

[52]  Ava Fatah gen. Schieck,et al.  Designing Media Architectural Interfaces for Interactions in Urban Spaces , 2015 .

[53]  Anna L. Cox,et al.  Media Multitasking at Home: A Video Observation Study of Concurrent TV and Mobile Device Usage , 2017, TVX.

[54]  John T. Stasko,et al.  A taxonomy of ambient information systems: four patterns of design , 2006, AVI '06.

[55]  Raimund Dachselt,et al.  cAR: Contact Augmented Reality with Transparent-Display Mobile Devices , 2014, PerDis.

[56]  Jörg Müller,et al.  Cuenesics: using mid-air gestures to select items on interactive public displays , 2014, MobileHCI '14.

[57]  Anind K. Dey,et al.  Casalendar: a temporal interface for automated homes , 2014, CHI Extended Abstracts.

[58]  BeiglMichael,et al.  Multi-sensor context-awareness in mobile devices and smart artifacts , 2002 .

[59]  Florian Alt,et al.  Looking glass: a field study on noticing interactivity of a shop window , 2012, CHI.

[60]  Morten Fjeld,et al.  Flow is Not Enough: Understanding the Needs of Advanced Amateur Runners to Design Motivation Technology , 2015, CHI.

[61]  Niels Henze,et al.  Exploring Interactions with Smart Windows for Sunlight Control , 2017, CHI Extended Abstracts.

[62]  Bongshin Lee,et al.  Reducing legacy bias in gesture elicitation studies , 2014, INTR.

[63]  Kim Halskov,et al.  Dynamically transparent window , 2009, CHI Extended Abstracts.

[64]  Florian Alt,et al.  Understanding Display Blindness in Future Display Deployments , 2015, PerDis.

[65]  Jörg Müller,et al.  StrikeAPose: revealing mid-air gestures on public displays , 2013, CHI.

[66]  Sarah C. Darby,et al.  “Home is where the smart is”? Evaluating smart home research and approaches against the concept of home , 2018 .

[67]  Tara Matthews,et al.  A toolkit for managing user attention in peripheral displays , 2004, UIST '04.

[68]  David Lindlbauer,et al.  Tracs: transparency-control for see-through displays , 2014, UIST.

[69]  Johan Redström Making Design Theory , 2017 .

[70]  Jlm Jan Hensen,et al.  Climate adaptive building shells: state-of-the-art and future challenges , 2013 .

[71]  Kori Inkpen Quinn,et al.  Single display privacyware: augmenting public displays with private information , 2001, CHI.

[72]  Andy Cockburn,et al.  User-defined gestures for augmented reality , 2013, INTERACT.

[73]  Albrecht Schmidt,et al.  Multi-Sensor Context-Awareness in Mobile Devices and Smart Artifacts , 2002, Mob. Networks Appl..

[74]  Andrew Vande Moere,et al.  Revealing the architectural quality of media architecture , 2016, MAB.

[75]  Tero Jokela,et al.  A Diary Study on Combining Multiple Information Devices in Everyday Activities and Tasks , 2015, CHI.

[76]  Yang Li,et al.  User-defined motion gestures for mobile interaction , 2011, CHI.

[77]  Boyang Li,et al.  Reducing Interruptions at Work: A Large-Scale Field Study of FlowLight , 2017, CHI.

[78]  Yvonne Rogers,et al.  LOOP: A Physical Artifact to Facilitate Seamless Interaction with Personal Data in Everyday Life , 2017, Conference on Designing Interactive Systems.

[79]  Anind K. Dey,et al.  Heuristic evaluation of ambient displays , 2003, CHI '03.

[80]  Sayan Sarcar,et al.  Designing Mid-Air TV Gestures for Blind People Using User- and Choice-Based Elicitation Approaches , 2016, Conference on Designing Interactive Systems.

[81]  Antti Oulasvirta,et al.  It's Mine, Don't Touch!: interactions at a large multi-touch display in a city centre , 2008, CHI.

[82]  Niels Henze,et al.  PD Notify: Investigating Personal Content on Public Displays , 2018, CHI Extended Abstracts.

[83]  Pattie Maes,et al.  Shutters: a permeable surface for environmental control and communication , 2009, TEI.

[84]  Daniel Harrison,et al.  Feelybean: communicating touch over distance , 2012, CHI EA '12.

[85]  David Kim,et al.  HoloDesk: direct 3d interactions with a situated see-through display , 2012, CHI.

[86]  Ann Morrison,et al.  Playing it real: magic lens and static peephole interfaces for games in a public space , 2012, Mobile HCI.

[87]  Yvonne Rogers Playful Interactions in Public , 2015, CHI PLAY.

[88]  D.,et al.  DESIGNING SYNCHRONOUS INTERACTIONS FOR THE FENESTRATION SYSTEM OF A PROTOTYPE SUSTAINABLE DWELLING , 2014 .

[89]  Jun Rekimoto,et al.  Squama: modular visibility control of walls and windows for programmable physical architectures , 2012, AVI.