Real-Time Optimizing Control of an Experimental Crosswind Power Kite

The contribution of this paper is to propose and experimentally validate an optimizing control strategy for power kites flying crosswind. The algorithm ensures the kite follows a reference path (control) and also periodically optimizes the reference path (efficiency optimization). The path-following part of the controller is capable of consistently following a reference path, despite significant time delays and wind variations, using position measurements only. The path-optimization part adjusts the reference path in order to maximize line tension. It uses a real-time optimization algorithm that combines off-line modeling knowledge and on-line measurements. The algorithm has been tested comprehensively on a small-scale prototype, and this paper focuses on experimental results.

[1]  Lorenzo Fagiano,et al.  Automatic Retraction and Full-Cycle Operation for a Class of Airborne Wind Energy Generators , 2014, IEEE Transactions on Control Systems Technology.

[2]  Moritz Diehl,et al.  Numerical Trajectory Optimization for Airborne Wind Energy Systems Described by High Fidelity Aircraft Models , 2013 .

[3]  Lorenzo Fagiano,et al.  On real-time optimization of airborne wind energy generators , 2013, 52nd IEEE Conference on Decision and Control.

[4]  P. Williams,et al.  Optimal Cross-Wind Towing and Power Generation with Tethered Kites , 2007 .

[5]  Richard Ruiterkamp,et al.  Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System , 2013 .

[6]  Moritz Diehl,et al.  Optimal control for power generating kites , 2007, 2007 European Control Conference (ECC).

[7]  Roland Schmehl,et al.  Applied Tracking Control for Kite Power Systems , 2014 .

[8]  Aldo U. Zgraggen,et al.  Model-based identification and control of the velocity vector orientation for autonomous kites , 2015, 2015 American Control Conference (ACC).

[9]  M. Diehl,et al.  Airborne Wind Energy , 2023, Green Energy and Technology.

[10]  Dominique Bonvin,et al.  A Directional Modifier-Adaptation Algorithm for Real-Time Optimization , 2016 .

[11]  Lorenzo Fagiano,et al.  Automatic Crosswind Flight of Tethered Wings for Airborne Wind Energy: Modeling, Control Design, and Experimental Results , 2013, IEEE Transactions on Control Systems Technology.

[12]  Michael Erhard,et al.  Control of Towing Kites for Seagoing Vessels , 2012, IEEE Transactions on Control Systems Technology.

[13]  Cristina L. Archer,et al.  An Introduction to Meteorology for Airborne Wind Energy , 2013 .

[14]  Xaver Paulig,et al.  Conceptual Design of Textile Kites Considering Overall System Performance , 2013 .

[15]  J. Breukels,et al.  An engineering methodology for kite design , 2011 .

[16]  Aldo U. Zgraggen,et al.  Model-based flight path planning and tracking for tethered wings , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[17]  Colin Neil Jones,et al.  Improved path following for kites with input delay compensation , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[18]  R. A. Shenoi,et al.  Determination of kite forces using three-dimensional flight trajectories for ship propulsion , 2011 .

[19]  Timothy W. McLain,et al.  Vector Field Path Following for Miniature Air Vehicles , 2007, IEEE Transactions on Robotics.

[20]  Rolf H. Luchsinger,et al.  Simulation Based Wing Design for Kite Power , 2013 .

[21]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[22]  Daniel Rixen,et al.  Dynamic Nonlinear Aeroelastic Model of a Kite for Power Generation , 2014 .

[23]  Daniel Rixen,et al.  Nonlinear aeroelasticity, flight dynamics and control of a flexible membrane traction kite , 2013 .

[24]  Jan Swevers,et al.  Real-time nonlinear MPC and MHE for a large-scale mechatronic application , 2015 .

[25]  Thomas E. Marlin,et al.  Design cost: a systematic approach to technology selection for model-based real-time optimization systems , 1996 .

[26]  Roland Schmehl,et al.  Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics , 2013 .

[27]  Lorenzo Fagiano,et al.  Airborne Wind Energy: An overview , 2012, 2012 American Control Conference (ACC).

[28]  Sean Costello,et al.  Real-Time Optimization via Directional Modifier Adaptation, with Application to Kite Control , 2015 .

[29]  Moritz Diehl,et al.  Modeling of Airborne Wind Energy Systems in Natural Coordinates , 2013 .

[30]  M. L. Loyd Crosswind kite power , 1980 .

[31]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[32]  Michael Erhard,et al.  Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design , 2013 .

[33]  B.W. Roberts,et al.  Harnessing High-Altitude Wind Power , 2007, IEEE Transactions on Energy Conversion.

[34]  Lorenzo Fagiano,et al.  High Altitude Wind Energy Generation Using Controlled Power Kites , 2010, IEEE Transactions on Control Systems Technology.

[35]  Dominique Bonvin,et al.  Directional real-time optimization applied to a kite-control simulation benchmark , 2015, 2015 European Control Conference (ECC).

[36]  Dominic A. Hudson,et al.  Comparison of Two Kite Force Models with Experiment , 2010 .

[37]  Ivan Argatov,et al.  Energy conversion efficiency of the pumping kite wind generator , 2010 .

[38]  M. Diehl,et al.  Optimal Control of Towing Kites , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[39]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[40]  Wubbo Johannes Ockels,et al.  Tracking control with adaption of kites , 2010, ArXiv.

[41]  Lorenzo Fagiano,et al.  Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy , 2013, IEEE Transactions on Control Systems Technology.

[42]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[43]  Moritz Diehl,et al.  A quaternion‐based model for optimal control of an airborne wind energy system , 2015, ArXiv.

[44]  C. L. Archer,et al.  Evaluation of global wind power , 2005 .

[45]  Dominique Bonvin,et al.  Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation , 2013 .

[46]  Moritz Diehl,et al.  Nonlinear MPC of kites under varying wind conditions for a new class of large‐scale wind power generators , 2007 .