Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids

The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In the present work, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology, and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. The modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation...

[1]  É. Drockenmuller,et al.  Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes. , 2016, Chemical communications.

[2]  R. Noble,et al.  Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity , 2016 .

[3]  R. Segalman,et al.  Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length, Ionic Content, and Confinement , 2016 .

[4]  M. Paluch,et al.  Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids , 2015 .

[5]  R. Marcilla,et al.  Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s , 2015 .

[6]  K. Winey,et al.  Bromide and Hydroxide Conductivity–Morphology Relationships in Polymerized Ionic Liquid Block Copolymers , 2015 .

[7]  A. Sokolov,et al.  Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups , 2015 .

[8]  Young Gyu Kim,et al.  Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums , 2015 .

[9]  J. Runt,et al.  Molecular Volume Effects on the Dynamics of Polymerized Ionic Liquids and their Monomers , 2015 .

[10]  A. Sokolov,et al.  Design of superionic polymers—New insights from Walden plot analysis , 2014 .

[11]  H. Ohno,et al.  15th anniversary of polymerised ionic liquids , 2014 .

[12]  A. Sokolov,et al.  Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes , 2014 .

[13]  F. Kremer,et al.  Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. , 2014, Soft matter.

[14]  K. Winey,et al.  Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths , 2014 .

[15]  A. Sokolov,et al.  Ionic Transport, Microphase Separation, and Polymer Relaxation in Poly(propylene glycol) and Lithium Perchlorate Mixtures , 2013 .

[16]  Kenji Nakamura,et al.  Dielectric relaxation behavior of polymerized ionic liquids with various charge densities , 2013 .

[17]  Tadashi Inoue,et al.  Viscoelastic Behavior of Polymerized Ionic Liquids with Various Charge Densities , 2013 .

[18]  Hui Zhao,et al.  Optimizing the electrochemical performance of imidazolium‐based polymeric ionic liquids by varying tethering groups , 2013 .

[19]  C. Angell,et al.  Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions , 2012 .

[20]  A. Sokolov,et al.  Effect of Polar Interactions on Polymer Dynamics , 2012 .

[21]  Tadashi Inoue,et al.  Dielectric Relaxation and Viscoelastic Behavior of Polymerized Ionic Liquids with Various Counteranions , 2012 .

[22]  K. Winey,et al.  Ionic Conduction and Dielectric Response of Poly(imidazolium acrylate) Ionomers , 2012 .

[23]  F. Kremer,et al.  Charge transport and glassy dynamics in ionic liquids. , 2012, Accounts of chemical research.

[24]  A. Sokolov,et al.  Decoupling of ionic transport from segmental relaxation in polymer electrolytes. , 2012, Physical review letters.

[25]  C. Angell,et al.  Protic ionic liquids based on decahydroisoquinoline: lost superfragility and ionicity-fragility correlation. , 2012, The journal of physical chemistry. B.

[26]  K. Grzybowska,et al.  Anomalous electrical conductivity behavior at elevated pressure in the protic ionic liquid procainamide hydrochloride. , 2012, Physical review letters.

[27]  T. Furukawa,et al.  Correlation between ionic and molecular dynamics in the liquid state of polyethylene oxide/lithium perchlorate complexes , 2011 .

[28]  D. Mecerreyes Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes , 2011 .

[29]  Matthew D. Green,et al.  Alkyl‐Substituted N‐Vinylimidazolium Polymerized Ionic Liquids: Thermal Properties and Ionic Conductivities , 2011 .

[30]  A. Kisliuk,et al.  Decoupling charge transport from the structural dynamics in room temperature ionic liquids. , 2011, The Journal of chemical physics.

[31]  Tadashi Inoue,et al.  Viscoelastic Behavior of the Polymerized Ionic Liquid Poly(1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonylimide)) , 2011 .

[32]  Alexei P. Sokolov,et al.  Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes? , 2011 .

[33]  Zhongfan Jia,et al.  Self-catalyzed degradation of linear cationic poly(2-dimethylaminoethyl acrylate) in water. , 2011, Biomacromolecules.

[34]  C. Glorieux,et al.  Influence of the anion on the electrical conductivity and glass formation of 1-butyl-3-methylimidazolium ionic liquids. , 2010, The Journal of chemical physics.

[35]  Kenji Nakamura,et al.  Dielectric Relaxation Behavior of Polymerized Ionic Liquid , 2010 .

[36]  M. Watanabe,et al.  Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. , 2010, Physical chemistry chemical physics : PCCP.

[37]  K. Freed,et al.  Application of the entropy theory of glass formation to poly(alpha-olefins). , 2009, The Journal of chemical physics.

[38]  Maria Forsyth,et al.  On the concept of ionicity in ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[39]  K. Schweizer,et al.  Resolving the mystery of the chain friction mechanism in polymer liquids. , 2009, Physical review letters.

[40]  J. Runt,et al.  Molecular mobility and Li(+) conduction in polyester copolymer ionomers based on poly(ethylene oxide). , 2009, The Journal of chemical physics.

[41]  F. Kremer,et al.  Universal scaling of charge transport in glass-forming ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[42]  A. Sokolov,et al.  Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture , 2008 .

[43]  F. Kremer,et al.  Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. , 2008, The Journal of chemical physics.

[44]  C. Angell,et al.  Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. , 2007, Accounts of chemical research.

[45]  Maria Forsyth,et al.  Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. , 2007, Accounts of chemical research.

[46]  A. Sokolov,et al.  Why many polymers are so fragile , 2007 .

[47]  C. Angell,et al.  Protic Ionic Liquids: Preparation, Characterization, and Proton Free Energy Level Representation † , 2007 .

[48]  Hiroyuki Ohno,et al.  Design of Ion Conductive Polymers Based on Ionic Liquids , 2007 .

[49]  G. McKenna,et al.  Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids , 2006 .

[50]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[51]  H. Ohno,et al.  Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids , 2006 .

[52]  J. Dudowicz,et al.  Entropy theory of polymer glass formation revisited. I. General formulation. , 2006, The Journal of chemical physics.

[53]  Marie K. Mapes,et al.  Self-diffusion of supercooled o-terphenyl near the glass transition temperature. , 2006, The journal of physical chemistry. B.

[54]  H. Ohno,et al.  Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives , 2005 .

[55]  J. Dudowicz,et al.  The glass transition temperature of polymer melts. , 2005, The journal of physical chemistry. B.

[56]  J. Dudowicz,et al.  Fragility of glass-forming polymer liquids. , 2005, The journal of physical chemistry. B.

[57]  C. T. Moynihan,et al.  Comments on the electric modulus function , 2005 .

[58]  H. Ohno,et al.  Development of new class of ion conductive polymers based on ionic liquids , 2004 .

[59]  J. Runt,et al.  Segmental Dynamics and Ionic Conduction in Poly(vinyl methyl ether)-Lithium Perchlorate Complexes. , 2004, The journal of physical chemistry. B.

[60]  Masahiro Yoshizawa,et al.  Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids , 2004 .

[61]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[62]  Wu Xu,et al.  Solvent-Free Electrolytes with Aqueous Solution-Like Conductivities , 2003, Science.

[63]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[64]  R. McMahon,et al.  Self-diffusion of tris-naphthylbenzene near the glass transition temperature. , 2003, Physical review letters.

[65]  P. Wright Developments in Polymer Electrolytes for Lithium Batteries , 2002 .

[66]  J. van Turnhout,et al.  Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling , 2002 .

[67]  K. Ngai,et al.  Temperature Dependence of Segmental and Terminal Relaxation in Atactic Polypropylene Melts , 2001 .

[68]  H. Ohno,et al.  Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity , 2001 .

[69]  Marca M. Doeff,et al.  Transport properties of the solid polymer electrolyte system P(EO)nLiTFSI , 2000 .

[70]  B. Scrosati,et al.  Polymer Electrolytes: The Key to Lithium Polymer Batteries , 2000 .

[71]  R. Agrawal,et al.  Superionic solid: composite electrolyte phase – an overview , 1999 .

[72]  Kaori Ito,et al.  Room-Temperature Molten Salt Polymers as a Matrix for Fast Ion Conduction. , 1998 .

[73]  J. Chiefari,et al.  Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process , 1998 .

[74]  C. Angell,et al.  Probe ion diffusivity measurements in salt-in-polymer electrolytes: Stokes radii and the transport number problem , 1996 .

[75]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[76]  C. Angell,et al.  Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000 , 1992 .

[77]  C. Angell Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems☆ , 1991 .

[78]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[79]  P. B. Macedo,et al.  STRUCTURAL RELAXATION IN VITREOUS MATERIALS * , 1976 .

[80]  S. Israel,et al.  Synthesis and homopolymerization studies of vinylimidazolium salts , 1973 .

[81]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[82]  H. Sasabe,et al.  Relationship between Ionic Mobility and Segmental Mobility in Polymers in the Liquid State , 1972 .

[83]  P. Flory,et al.  The glass temperature and related properties of polystyrene. Influence of molecular weight , 1954 .

[84]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[85]  C. Angell,et al.  Ionic liquids: past, present and future. , 2012, Faraday discussions.

[86]  A. Sokolov,et al.  When Does a Molecule Become a Polymer , 2004 .

[87]  Mark A. Ratner,et al.  ION TRANSPORT IN SOLVENT-FREE POLYMERS. , 1988 .

[88]  R. F. Boyer Variation of Polymer Glass Temperatures with Molecular Weight , 1974 .