SPARKs: Succinct Parallelizable Arguments of Knowledge

We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument system with the following three properties for computing and proving a time T (non-deterministic) computation: The prover’s (parallel) running time is \(T + \mathrm {poly}\!\log T\). (In other words, the prover’s running time is essentially T for large computation times!) The prover uses at most \(\mathrm {poly}\!\log T\) processors. The communication complexity and verifier complexity are both \(\mathrm {poly}\!\log T\).

[1]  Vladimir Kolmogorov,et al.  On the Complexity of Scrypt and Proofs of Space in the Parallel Random Oracle Model , 2016, EUROCRYPT.

[2]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[3]  Stefan Dziembowski,et al.  Proofs of Space , 2015, CRYPTO.

[4]  Sunoo Park,et al.  Static-Memory-Hard Functions, and Modeling the Cost of Space vs. Time , 2018, TCC.

[5]  Benjamin Wesolowski,et al.  Efficient Verifiable Delay Functions , 2019, Journal of Cryptology.

[6]  Guy N. Rothblum,et al.  Constant-Round Interactive Proofs for Delegating Computation , 2016, Electron. Colloquium Comput. Complex..

[7]  Paul Valiant,et al.  Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency , 2008, TCC.

[8]  Nir Bitansky,et al.  Time-Lock Puzzles from Randomized Encodings , 2016, IACR Cryptol. ePrint Arch..

[9]  Yehuda Lindell,et al.  Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation , 2001, Journal of Cryptology.

[10]  Colin Percival STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS , 2009 .

[11]  Stefano Tessaro,et al.  Scrypt Is Maximally Memory-Hard , 2017, EUROCRYPT.

[12]  Nir Bitansky,et al.  The Hunting of the SNARK , 2016, Journal of Cryptology.

[13]  Nir Bitansky,et al.  On the existence of extractable one-way functions , 2014, SIAM J. Comput..

[14]  Yael Tauman Kalai,et al.  Interactive PCP , 2007 .

[15]  Ronald L. Rivest,et al.  Time-lock Puzzles and Timed-release Crypto , 1996 .

[16]  Joe Kilian,et al.  A note on efficient zero-knowledge proofs and arguments (extended abstract) , 1992, STOC '92.

[17]  Yael Tauman Kalai,et al.  Delegating RAM Computations , 2016, TCC.

[18]  Eli Ben-Sasson,et al.  SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge , 2013, CRYPTO.

[19]  Nico Döttling,et al.  Tight Verifiable Delay Functions , 2020, IACR Cryptol. ePrint Arch..

[20]  Silvio Micali,et al.  Computationally Sound Proofs , 2000, SIAM J. Comput..

[21]  Moni Naor,et al.  Pebbling and Proofs of Work , 2005, CRYPTO.

[22]  Ilan Komargodski,et al.  Continuous Verifiable Delay Functions , 2020, IACR Cryptol. ePrint Arch..

[23]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[24]  Ron Rothblum,et al.  Local Proofs Approaching the Witness Length [Extended Abstract] , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[25]  R. Cramer,et al.  Linear Zero-Knowledgde. A Note on Efficient Zero-Knowledge Proofs and Arguments , 1996 .

[26]  Kai-Min Chung,et al.  Constant-Round Concurrent Zero Knowledge from P-Certificates , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[27]  Mihir Bellare,et al.  On Defining Proofs of Knowledge , 1992, CRYPTO.

[28]  Rafail Ostrovsky,et al.  Trapdoor Hash Functions and Their Applications , 2019, IACR Cryptol. ePrint Arch..

[29]  Jeremiah Blocki,et al.  Depth-Robust Graphs and Their Cumulative Memory Complexity , 2017, EUROCRYPT.

[30]  Rafael Pass,et al.  Limits of Extractability Assumptions with Distributional Auxiliary Input , 2015, ASIACRYPT.

[31]  Nir Bitansky,et al.  From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again , 2012, ITCS '12.

[32]  Craig Gentry,et al.  Pinocchio: Nearly Practical Verifiable Computation , 2013, 2013 IEEE Symposium on Security and Privacy.

[33]  Eli Ben-Sasson,et al.  Short PCPs with Polylog Query Complexity , 2008, SIAM J. Comput..

[34]  Krzysztof Pietrzak,et al.  Simple Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[35]  Ivan Damgård,et al.  Linear zero-knowledge—a note on efficient zero-knowledge proofs and arguments , 1997, STOC '97.

[36]  Jeremiah Blocki,et al.  Sustained Space Complexity , 2017, IACR Cryptol. ePrint Arch..

[37]  Silvio Micali,et al.  Local zero knowledge , 2006, STOC '06.

[38]  Boaz Barak,et al.  How to go beyond the black-box simulation barrier , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[39]  Björn Tackmann,et al.  Moderately Hard Functions: Definition, Instantiations, and Applications , 2017, TCC.

[40]  Rafael Pass,et al.  Concurrent Nonmalleable Commitments , 2008, SIAM J. Comput..

[41]  Nir Bitansky,et al.  Succinct Arguments from Multi-prover Interactive Proofs and Their Efficiency Benefits , 2012, CRYPTO.

[42]  Dario Fiore,et al.  Vector Commitments and Their Applications , 2013, Public Key Cryptography.

[43]  Oded Goldreich,et al.  Universal arguments and their applications , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[44]  Moni Naor,et al.  Revocation and Tracing Schemes for Stateless Receivers , 2001, CRYPTO.

[45]  Ralph C. Merkle,et al.  A Certified Digital Signature , 1989, CRYPTO.

[46]  Joël Alwen,et al.  High Parallel Complexity Graphs and Memory-Hard Functions , 2015, IACR Cryptol. ePrint Arch..

[47]  Yuval Ishai,et al.  Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle , 2008, EUROCRYPT.

[48]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs with Constant Rate and Query Complexity , 2017, ICALP.

[49]  Eli Ben-Sasson,et al.  On the concrete efficiency of probabilistically-checkable proofs , 2013, STOC '13.

[50]  Nir Bitansky,et al.  Recursive composition and bootstrapping for SNARKS and proof-carrying data , 2013, STOC '13.

[51]  Yael Tauman Kalai,et al.  Delegating computation: interactive proofs for muggles , 2008, STOC.

[52]  Jon Howell,et al.  Geppetto: Versatile Verifiable Computation , 2015, 2015 IEEE Symposium on Security and Privacy.

[53]  Dan Boneh,et al.  A Survey of Two Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[54]  Dan Boneh,et al.  Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[55]  Moni Naor,et al.  On Memory-Bound Functions for Fighting Spam , 2003, CRYPTO.

[56]  Ron Rothblum,et al.  Delegating Computations with (Almost) Minimal Time and Space Overhead , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[57]  Ion Stoica,et al.  DIZK: A Distributed Zero Knowledge Proof System , 2018, IACR Cryptol. ePrint Arch..

[58]  Eli Ben-Sasson,et al.  Interactive Oracle Proofs , 2016, TCC.