The EmsB Tandemly Repeated Multilocus Microsatellite: a New Tool To Investigate Genetic Diversity of Echinococcus granulosus Sensu Lato

ABSTRACT Cystic echinococcosis (CE) is a widespread and severe zoonotic disease caused by infection with the larval stage of the eucestode Echinococcus granulosus sensu lato. The polymorphism exhibited by nuclear and mitochondrial markers conventionally used for the genotyping of different parasite species and strains does not reach the level necessary for the identification of genetic variants linked to restricted geographical areas. EmsB is a tandemly repeated multilocus microsatellite that proved its usefulness for the study of genetic polymorphisms within the species E. multilocularis, the causative agent of alveolar echinococcosis. In the present study, EmsB was used to characterize E. granulosus sensu lato samples collected from different host species (sheep, cattle, dromedaries, dogs, and human patients) originating from six different countries (Algeria, Mauritania, Romania, Serbia, Brazil, and the People's Republic of China). The conventional mitochondrial cox1 and nad1 markers identified genotypes G1, G3, G5, G6, and G7, which are clustered into three groups corresponding to the species E. granulosus sensu stricto, E. ortleppi, and E. canadensis. With the same samples, EmsB provided a higher degree of genetic discrimination and identified variations that correlated with the relatively small-scale geographic origins of the samples. In addition, one of the Brazilian single hydatid cysts presented a hybrid genotypic profile that suggested genetic exchanges between E. granulosus sensu stricto and E. ortleppi. In summary, the EmsB microsatellite exhibits an interesting potential for the elaboration of a detailed map of the distribution of genetic variants and therefore for the determination and tracking of the source of CE.

[1]  R. Piarroux,et al.  Multi-locus microsatellite analysis supports the hypothesis of an autochthonous focus of Echinococcus multilocularis in northern Italy. , 2009, International journal for parasitology.

[2]  R. Piarroux,et al.  Genetic Diversity of the Cestode Echinococcus multilocularis in Red Foxes at a Continental Scale in Europe , 2009, PLoS neglected tropical diseases.

[3]  F. Ayala,et al.  Using mitochondrial and nuclear markers to evaluate the degree of genetic cohesion among Echinococcus populations. , 2008, Experimental parasitology.

[4]  U. Mackenstedt,et al.  Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion. , 2008, International journal for parasitology.

[5]  R. Piarroux,et al.  Genetic diversity of Echinococcus multilocularis on a local scale. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[6]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[7]  R. Piarroux,et al.  Assessment of Use of Microsatellite Polymorphism Analysis for Improving Spatial Distribution Tracking of Echinococcus multilocularis , 2007, Journal of Clinical Microbiology.

[8]  R. Piarroux,et al.  Taxonomic position and geographical distribution of the common sheep G1 and camel G6 strains of Echinococcus granulosus in three African countries , 2006, Parasitology Research.

[9]  A. Zaha,et al.  Detection of genetic polymorphism among and within Echinococcus granulosus strains by heteroduplex analysis of a microsatellite from the U1 snRNA genes. , 2006, Genetics and molecular research : GMR.

[10]  R. Piarroux,et al.  EmsB, a tandem repeated multi-loci microsatellite, new tool to investigate the genetic diversity of Echinococcus multilocularis. , 2006, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[11]  S. Meri,et al.  Molecular characterization of Echinococcus isolates of cervid origin from Finland and Sweden , 2006, Parasitology.

[12]  D. McManus,et al.  A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes , 2006, Parasitology.

[13]  U. Mackenstedt,et al.  The present situation of echinococcosis in Europe. , 2006, Parasitology international.

[14]  R. Piarroux,et al.  Genetic typing of Echinococcus granulosus in Romania , 2005, Parasitology Research.

[15]  T. Meri,et al.  Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. , 2003, Parasitology.

[16]  A. Zaha,et al.  Isolation and characterization of microsatellites from the tapeworm Echinococcus granulosus , 2003, Parasitology.

[17]  D. McManus,et al.  Towards a taxonomic revision of the genus Echinococcus. , 2002, Trends in parasitology.

[18]  A. Zaha,et al.  Breeding systems in Echinococcus granulosus (Cestoda; Taeniidae): selfing or outcrossing? , 1999, Parasitology.

[19]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[20]  D. McManus,et al.  NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. , 1993, International journal for parasitology.

[21]  D. McManus,et al.  Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. , 1992, Molecular and biochemical parasitology.

[22]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[23]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[24]  M. Kimura,et al.  Average time until fixation of a mutant allele in a finite population under continued mutation pressure: Studies by analytical, numerical, and pseudo-sampling methods. , 1980, Proceedings of the National Academy of Sciences of the United States of America.