Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation

Given a continuous-time controller and a Lyapunov function that shows global asymptotic stability for the closed-loop system, we provide several results for modification of the controller for sampled-data implementation. The main idea behind this approach is to use a particular structure for the redesigned controller and the main technical result is to show that the Fliess series expansions (in the sampling period T) of the Lyapunov difference for the sampled-data system with the redesigned controller have a very special form that is useful for controller redesign. We present results on controller redesign that achieve two different goals. The first goal is making the lower-order terms (in T) in the series expansion of the Lyapunov difference with the redesigned controller more negative. These control laws are very similar to those obtained from Lyapunov-based redesign of continuous-time systems for robustification of control laws and they often lead to corrections of the well-known ''-L"gV'' form. The second goal is making the lower-order terms (in T) in the Fliess expansions of the Lyapunov difference for the sampled-data system with the redesigned controller behave as close as possible to the lower-order terms of the Lyapunov difference along solutions of the ''ideal'' sampled response of the continuous-time system with the original controller. In this case, the controller correction is very different from the first case and it contains appropriate ''prediction'' terms. The method is very flexible and one may try to achieve other objectives not addressed in this paper or derive similar results under different conditions. Simulation studies verify that redesigned controllers perform better (in an appropriate sense) than the unmodified ones when they are digitally implemented with sufficiently small sampling period T.

[1]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[2]  Wolfgang Kliemann,et al.  Infinite time optimal control and periodicity , 1989 .

[3]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[4]  L. Grüne Asymptotic Controllability and Exponential Stabilization of Nonlinear Control Systems at Singular Points , 1998 .

[5]  P. Kloeden,et al.  The inflation of attractors and their discretization: the autonomous case , 2000 .

[6]  H. Hermes,et al.  On the Synthesis of a Stabilizing Feedback Control via Lie Algebraic Methods , 2006 .

[7]  Maurizio Falcone,et al.  An Algorithm for the Global Solution of the Shape-from-Shading Model , 1997, ICIAP.

[8]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[9]  Paul Katz,et al.  Digital control using microprocessors , 1981 .

[10]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[11]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[12]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[13]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[14]  Courtney Coleman Local trajectory equivalence of differential systems , 1965 .

[15]  L. M. Abia,et al.  Numerical blow-up time convergence for discretizations of reaction-diffusion equations , 2000 .

[16]  Peter E. Kloeden,et al.  SPATIAL DISCRETIZATION OF MAPPINGS , 1993 .

[17]  Dragan Nesic,et al.  Open- and Closed-Loop Dissipation Inequalities Under Sampling and Controller Emulation , 2002, Eur. J. Control.

[18]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[19]  G. Bliss,et al.  Integrals of Lebesgue , 1917 .

[20]  Volodymyr Sushch On discrete models of the wave equation , 2000 .

[21]  Bernold Fiedler,et al.  Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .

[22]  F. Wilson The structure of the level surfaces of a Lyapunov function , 1967 .

[23]  Roberto Ferretti High-order approximations of linear control systems via Runge-Kutta schemes , 2007, Computing.

[24]  W. Beyn,et al.  Invariant Manifolds for Nonautonomous Systems with Application to One-Step Methods , 1998 .

[25]  A. Arapostathis,et al.  The effect sampling on linear equivalence and feedback linearization , 1990 .

[26]  A. Isidori Nonlinear Control Systems , 1985 .

[27]  Wolfgang Kliemann,et al.  Asymptotic null controllability of bilinear systems , 1995 .

[28]  Maurizio Falcone,et al.  An efficient algorithm for Hamilton–Jacobi equations in high dimension , 2004 .

[29]  Mohammed Derhab,et al.  On the number of solutions of quasilinear elliptic boundary value problems , 2000 .

[30]  Françoise Lamnabhi-Lagarrigue,et al.  An algebraic approach to nonlinear functional expansions , 1983 .

[31]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[32]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[33]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[34]  Mohamed Belhaq,et al.  Bifurcations in Three-Dimensional Systems: Asymptotic Treatment , 2000 .

[35]  Lars Grüne Discrete feedback stabilization of nonlinear control systems at a singular point , 1997 .

[36]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[37]  H. Hermes,et al.  Foundations of optimal control theory , 1968 .

[38]  E. Ryan Universal stabilization of a class of nonlinear systems with homogeneous vector fields , 1995 .

[39]  Dragan Nesic,et al.  A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models , 2004, IEEE Transactions on Automatic Control.

[40]  Lars Grüne,et al.  Maple for Stochastic Differential Equations , 2001 .

[41]  H. Hermes Smooth homogeneous asymptotically stabilizing feedback controls , 1997 .

[42]  Fabian R. Wirth,et al.  A regularization of Zubov’s equation for robust domains of attraction , 2001 .

[43]  Russell A. Gordon The Integrals of Lebesgue, Denjoy, Perron, and Henstock , 1994 .

[44]  L. Grüne Homogeneous state feedback stabilization of homogeneous systems , 2000, CDC.

[45]  Pavel Krejčí,et al.  Homogenization of Scalar Wave Equation with Hysteresis Operator , 2000 .

[46]  Matteo Turilli,et al.  Dynamics of Control , 2007, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE '07).

[47]  Teoman Özer Calculation of solution of Boussinesq problem using Lie symmetries , 2000 .

[48]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[49]  N. P. Bhatia,et al.  Dynamical Systems: Stability, Theory and Applications , 1967 .

[50]  Jack K. Hale,et al.  Lower semicontinuity of attractors of gradient systems and applications , 1989 .

[51]  L. Corrias Fast Legendre--Fenchel Transform and Applications to Hamilton--Jacobi Equations and Conservation Laws , 1996 .

[52]  Pedro J. Zufiria,et al.  Strong singularities and the continuous Newton method , 2000 .

[53]  P. Deuflhard Stochastic Versus Deterministic Numerical ODE Integration , 1992 .

[54]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[55]  M. Falcone A numerical approach to the infinite horizon problem of deterministic control theory , 1987 .

[56]  Courtney Coleman Addendum to: Local trajectory equivalence of differential systems , 1966 .

[57]  I. Dolcetta On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .

[58]  A. M. Micheletti,et al.  Multiple Nontrivial Solutions for a Floating Beam Equation via Critical Point Theory , 2001 .

[59]  Norbert Seehafer,et al.  Patterns in an electrically driven conducting fluid layer , 2000 .

[60]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[61]  D. Nesic,et al.  Backstepping on the Euler approximate model for stabilization of sampled-data nonlinear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[62]  Edoardo Mosca,et al.  Command governors for constrained nonlinear systems , 1999, IEEE Trans. Autom. Control..

[63]  Fabian R. Wirth,et al.  Robustness Analysis of Domains of Attraction of Nonlinear Systems , 1998 .

[64]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[65]  Eduardo D. Sontag,et al.  The ISS philosophy as a unifying framework for stability-like behavior , 2001 .

[66]  Nikolai Kutev Gradient estimates, interior gradient blow ups and comparison principle of nonlinear pde’s , 2000 .

[67]  David Angeli,et al.  Stabilization of cascades using integral input-to-state stability , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[68]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[69]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[70]  Lars Grüne,et al.  Numerical Stabilization of Bilinear Control Systems , 1996 .

[71]  P. Lions Optimal control and viscosity solutions , 1985 .

[72]  Eduardo D. Sontag,et al.  Remarks regarding the gap between continuous, Lipschitz, and differentiable storage functions for dissipation inequalities appearing in H∞ control , 1999 .

[73]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[74]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[75]  Alexander A. Nepomnyashchy,et al.  Convective Cahn-Hilliard models for kinetically controlled crystal growth , 2000 .

[76]  Lars Grüne,et al.  Higher order numerical schemes for affinely controlled nonlinear systems , 2001, Numerische Mathematik.

[77]  Dragan Nesic,et al.  Changing supply rates for input-output to state stable discrete-time nonlinear systems with applications , 2003, Autom..

[78]  W. Kliemann,et al.  Some aspects of control systems as dynamical systems , 1993 .

[79]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[80]  I. V. Skrypnik Degree theory for densely defined operators and applications , 2000 .

[81]  G. Nicolao,et al.  Stabilizing receding-horizon control of nonlinear time-varying systems , 1998, IEEE Trans. Autom. Control..

[82]  Lars Grüne Convergence Rates of Perturbed Attracting Sets with Vanishing Perturbation , 2000 .

[83]  H. I. Erdoğan On the Integrability of the Pfaffian Equation Concerning the Octahedral Web Formed by Four Pencils of Spheres , 2000 .

[84]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[85]  Alan R. Champneys,et al.  Resonant homoclinic flip bifurcations: a numerical investigation , 1999 .

[86]  Leonard J. Mirman,et al.  Optimal economic growth and uncertainty: The discounted case , 1972 .

[87]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[88]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[89]  A. Iggidr,et al.  Global stabilization of homogeneous polynomial systems in R n , 1992 .

[90]  A. R. Teelb,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[91]  Lars Grüne Discrete feedback stabilization of semilinear control systems , 1996 .

[92]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[93]  Pierpaolo Soravia Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. I. Equations of unbounded and degenerate control problems without uniqueness , 1999 .

[94]  R. Sepulchre,et al.  Stabilizability Does Not Imply Homogeneous Stabilizability for Controllable Homogeneous Systems , 1996 .

[95]  I. Murat Turhan,et al.  The relations between Painlevé property and Lie symmetries of second order ordinary differential equations , 2000 .

[96]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[97]  Peter E. Kloeden Asymptotically stable attracting sets in the Navier-Stokes equations , 1986, Bulletin of the Australian Mathematical Society.

[98]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[99]  Peter E. Kloeden,et al.  A note on multistep methods and attracting sets of dynamical systems , 1989 .

[100]  Eduard Zehnder,et al.  Flows on vector bundles and hyperbolic sets , 1988 .

[101]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[102]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[103]  Nikolay N. Nefedov,et al.  Asymptotics, existence and stability of solutions with internal layers of fast and slow elliptic systems , 2000 .

[104]  M. G. Kreïn Stability of solutions of differential equations in Banach space , 2007 .

[105]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[106]  F. Fontes A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .

[107]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[108]  James W. Daniel,et al.  Splines and efficiency in dynamic programming , 1976 .

[109]  Abdelkader Boucherif,et al.  Multipoint Boundary Value Problems , 2000 .

[110]  Lars Grüne,et al.  Pathwise Approximation of Random Ordinary Differential Equations , 2001 .

[111]  Wolfgang Kliemann,et al.  The Morse spectrum of linear flows on vector bundles , 1996 .

[112]  Vladimir M. Veliov,et al.  On the Time-Discretization of Control Systems , 1997 .

[113]  F. Clarke Methods of dynamic and nonsmooth optimization , 1989 .

[114]  Wolfgang Kliemann,et al.  Minimal and Maximal Lyapunov Exponents of Bilinear Control Systems , 1993 .

[115]  M. Falcone,et al.  Discrete Dynamic Programming and Viscosity Solutions of the Bellman Equation , 1989 .

[116]  Henry Hermes,et al.  Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..

[117]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[118]  Fabio Camilli,et al.  Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems , 1999 .

[119]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[120]  Jack K. Hale,et al.  Upper semicontinuity of attractors for approximations of semigroups and partial differential equations , 1988 .

[121]  M. Karoubi K-Theory: An Introduction , 1978 .

[122]  Heinz Hanβmann Quasi-periodic motions of the perturbed Euler top , 2000 .

[123]  Computer Algebra Tool for the Solution of the Boundary-value Problems , 2000 .

[124]  Ugur G. Abdulla On the Dirichlet Problem for the Nonlinear Parabolic Equations in Non-smooth Domains , 2000 .

[125]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[126]  Jens Timmer,et al.  Parameter estimation and model selection in ODE: the lipid metabolism , 2000 .

[127]  Takasi Senba,et al.  Behavior of solutions to a system related to chemotaxis , 2001 .

[128]  Eric Lombardi Phenomena Beyond all Orders and Bifurcations of Reversible Homoclinic Connections Near Higher Resonances , 2000 .

[129]  Hans-Peter Kruse,et al.  The Hamiltonian structure of the dynamics of ideal liquid bridges , 2000 .

[130]  P. Lions,et al.  Shape-from-shading, viscosity solutions and edges , 1993 .

[131]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[132]  Andrew Scott,et al.  Computational Methods for the Study of Dynamic Economies , 1998 .

[133]  Alfonso Baños,et al.  Nonlinear QFT synthesis based on harmonic balance and multiplier theory , 2001 .

[134]  Fabian R. Wirth,et al.  A Generalization of Zubov's Method to Perturbed Systems , 2001, SIAM J. Control. Optim..

[135]  L. Grüne Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization , 2002 .

[136]  Fabian R. Wirth,et al.  On the rate of convergence of infinite horizon discounted optimal value functions , 2000 .

[137]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[138]  William A. Brock,et al.  Nonconvexities in ecological management problems , 2000 .

[139]  Fabian R. Wirth,et al.  Asymptotic stability equals exponential stability, and ISS equals finite energy gain---if you twist your eyes , 1998, math/9812137.

[140]  Jess Benhabib,et al.  Uniqueness and Indeterminacy: On the Dynamics of Endogenous Growth , 1994 .

[141]  J. Tsitsiklis,et al.  An optimal one-way multigrid algorithm for discrete-time stochastic control , 1991 .

[142]  Michael Shub,et al.  Neighborhoods of hyperbolic sets , 1970 .

[143]  Guido Schneider,et al.  Weak hyperbolicity and traveling waves , 2000 .

[144]  Bernd Aulbach Asymptotic stability regions via extensions of Zubov's method—I , 1983 .

[145]  P. Kloeden,et al.  Stable attracting sets in dynamical systems and in their one-step discretizations , 1986 .

[146]  Peter E. Kloeden,et al.  Towards a Theory of Random Numerical Dynamics , 1999 .

[147]  James F. Selgrade,et al.  Isolated invariant sets for flows on vector bundles , 1975 .

[148]  Lars Grüne,et al.  A Uniform Exponential Spectrum for Linear Flows on Vector Bundles , 2000 .

[149]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[150]  Wolfgang Kliemann,et al.  The Lyapunov spectrum of families of time-varying matrices , 1996 .

[151]  Alexander Domoshnitsky,et al.  On Equations with state-dependent time lags , 2000 .

[152]  Àngel Jorba,et al.  A numerical method for computing unstable quasi-periodic solutions for the 2-D Poiseuille flow , 1999 .

[153]  Oliver Junge,et al.  Rigorous discretization of subdivision techniques , 2000 .

[154]  H. Gajewski,et al.  On a Reaction - Diffusion System Modelling Chemotaxis , 2000 .

[155]  Pierpaolo Soravia Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints , 1999, Differential and Integral Equations.

[156]  Eiji Yanagida Reaction-Diffusion Systems with Skew-Gradient Structure , 2001 .

[157]  M. Bardi,et al.  Hamilton-Jacobi equations with singular boundary conditions on a free boundary and applications to differential games , 1991 .

[158]  C. Storey,et al.  Numerical determination of domains of attraction for electrical power systems using the method of Zubov , 1981 .

[159]  Olivier D. Faugeras,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[160]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[161]  G. Akrivis A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.

[162]  Allan Drazen,et al.  Threshold Externalities in Economic Development , 1990 .

[163]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[164]  H. Ishii,et al.  Uniqueness results for a class of hamilton-jacobi equations with singular coefficients , 1995 .

[165]  B.D.O. Anderson,et al.  Controller design: moving from theory to practice , 1993, IEEE Control Systems.

[166]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[167]  Alberto Isidori,et al.  Nonlinear control in the Year 2000 , 2001 .

[168]  Maurizio Falcone,et al.  An approximation scheme for the optimal control of diffusion processes , 1995 .

[169]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[170]  L. Grüne An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation , 1997 .

[171]  Dirk Aeyels,et al.  Mathematics of Control , Signals , and Systems Homogeneous Lyapunov Functions and Necessary Conditions for Stabilization * , 2022 .

[172]  M. Falcone,et al.  An approximation scheme for the minimum time function , 1990 .

[173]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[174]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[175]  Lars Grüne,et al.  Zubov ’ s method for perturbed differential equations , 2000 .

[176]  Roumen Anguelov,et al.  On the Mathematical Foundation of the Nonstandard Finite Difference Method , 2000 .

[177]  Fabian Wirth,et al.  Robustness of nonlinear systems subject to time-varying perturbations , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[178]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[179]  V Krishnamurthy Combinatorics: Theory and applications , 1986 .

[180]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[181]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[182]  M. Corless Control of Uncertain Nonlinear Systems , 1993 .

[183]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .