Evaluation of the ability of C. albicans to form biofilm in the presence of phage-resistant phenotypes of P. aeruginosa
暂无分享,去创建一个
S. Sillankorva | J. Lam | M. Henriques | C. Almeida | J. Azeredo | D. Pires | Sónia Silva | Erin M. Anderson
[1] L. Samaranayake,et al. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development. , 2013, Molecular oral microbiology.
[2] Jungmin Kim,et al. Pseudomonas aeruginosa Bacteriophage PA1Ø Requires Type IV Pili for Infection and Shows Broad Bactericidal and Biofilm Removal Activities , 2012, Applied and Environmental Microbiology.
[3] M. Kollef,et al. The Epidemiology, Pathogenesis and Treatment of Pseudomonas aeruginosa Infections , 2012, Drugs.
[4] S. Sillankorva,et al. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. , 2011, Research in microbiology.
[5] C. Fernandez-Prada,et al. Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice , 2011, PloS one.
[6] S. de Bentzmann,et al. The Pseudomonas aeruginosa opportunistic pathogen and human infections. , 2011, Environmental microbiology.
[7] J. Lam,et al. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide , 2011, Front. Microbio..
[8] R. Lavigne,et al. Phenotypic and genotypic variations within a single bacteriophage species , 2011, Virology Journal.
[9] R M Watt,et al. Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. , 2010, Journal of medical microbiology.
[10] G. Butler,et al. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. , 2010, Microbiology.
[11] David W Williams,et al. In Vitro Biofilm Activity of Non-Candida albicansCandida Species , 2010, Current Microbiology.
[12] R. Watt,et al. Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development , 2010, BMC Microbiology.
[13] L. Samaranayake,et al. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. , 2009, Journal of medical microbiology.
[14] David W Williams,et al. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. , 2009, Medical mycology.
[15] S. Nseir,et al. Pseudomonas aeruginosa and Candida albicans: do they really need to stick together? , 2009, Critical care medicine.
[16] R. Donlan. Preventing biofilms of clinically relevant organisms using bacteriophage. , 2009, Trends in microbiology.
[17] E. Lingohr,et al. Enumeration of bacteriophages by double agar overlay plaque assay. , 2009, Methods in molecular biology.
[18] E. Lingohr,et al. Enumeration of bacteriophages using the small drop plaque assay system. , 2009, Methods in molecular biology.
[19] A. Kropinski. Measurement of the bacteriophage inactivation kinetics with purified receptors. , 2009, Methods in molecular biology.
[20] Sudhir Aggarwal,et al. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. , 2009, Journal of infection and public health.
[21] P. Neubauer,et al. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A , 2008, BMC biotechnology.
[22] F. O'Gara,et al. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. , 2008, Journal of medical microbiology.
[23] C. van Delden,et al. Pseudomonas aeruginosa bloodstream infections: how should we treat them? , 2007, International journal of antimicrobial agents.
[24] G. Hanlon,et al. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. , 2007, International journal of antimicrobial agents.
[25] J. Fralick,et al. Phage Therapy of Pseudomonas aeruginosa Infection in a Mouse Burn Wound Model , 2007, Antimicrobial Agents and Chemotherapy.
[26] C. van Delden. Pseudomonas aeruginosa bloodstream infections: how should we treat them? , 2007, International journal of antimicrobial agents.
[27] D. Hogan,et al. Fungal--bacterial interactions: a mixed bag of mingling microbes. , 2006, Current opinion in microbiology.
[28] R. Donlan,et al. Using Bacteriophages To Reduce Formation of Catheter-Associated Biofilms by Staphylococcus epidermidis , 2006, Antimicrobial Agents and Chemotherapy.
[29] G. Pierce. Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control , 2005, Journal of Industrial Microbiology and Biotechnology.
[30] Toshikazu Tani,et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases , 2005, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
[31] R. Kolter,et al. A Pseudomonas aeruginosa quorum‐sensing molecule influences Candida albicans morphology , 2004, Molecular microbiology.
[32] A. Górski,et al. Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. , 2003, Transplantation proceedings.
[33] R. Kolter,et al. Pseudomonas-Candida Interactions: An Ecological Role for Virulence Factors , 2002, Science.
[34] K. Tait,et al. The efficacy of bacteriophage as a method of biofilm eradication , 2002 .
[35] R. Calderone,et al. Virulence factors of Candida albicans. , 2001, Trends in microbiology.
[36] A. Górski,et al. Bacteriophage therapy for infections in cancer patients , 2001 .
[37] L. Burrows,et al. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. , 2000, Microbiology.
[38] B. Iglewski,et al. Cell-to-cell signaling and Pseudomonas aeruginosa infections. , 1998, Emerging infectious diseases.
[39] J. Lam,et al. Synthesis of the A‐band polysaccharide sugar D‐rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa , 1998, Molecular microbiology.
[40] L. Burrows,et al. Three rhamnosyltransferases responsible for assembly of the A‐band D‐rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A‐band and B‐band lipopolysaccharide synthesis , 1998, Molecular microbiology.
[41] C. Nombela,et al. Candida albicans: genetics, dimorphism and pathogenicity. , 1998, International microbiology : the official journal of the Spanish Society for Microbiology.
[42] J. Lam,et al. Identification and functional characterization of an ABC transport system involved in polysaccharide export of A-band lipopolysaccharide in Pseudomonas aeruginosa , 1997, Journal of bacteriology.
[43] J. Lam,et al. Diverse VH and V kappa genes encode antibodies to Pseudomonas aeruginosa LPS. , 1995, Journal of immunology.
[44] H. Schweizer,et al. Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype O5) , 1995, Molecular microbiology.
[45] C. Galanos,et al. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels , 1990, Journal of clinical microbiology.
[46] J. Sambrook,et al. Molecular Cloning: A Laboratory Manual , 2001 .
[47] P. Hitchcock,et al. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels , 1983, Journal of bacteriology.
[48] A. Wright,et al. Lipopolysaccharide as a Bacteriophage Receptor , 1980 .
[49] U. K. Laemmli,et al. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.