Visual Perception of Procedural Textures: Identifying Perceptual Dimensions and Predicting Generation Models

Procedural models are widely used in computer graphics for generating realistic, natural-looking textures. However, these mathematical models are not perceptually meaningful, whereas the users, such as artists and designers, would prefer to make descriptions using intuitive and perceptual characteristics like "repetitive," "directional," "structured," and so on. To make up for this gap, we investigated the perceptual dimensions of textures generated by a collection of procedural models. Two psychophysical experiments were conducted: free-grouping and rating. We applied Hierarchical Cluster Analysis (HCA) and Singular Value Decomposition (SVD) to discover the perceptual features used by the observers in grouping similar textures. The results suggested that existing dimensions in literature cannot accommodate random textures. We therefore utilized isometric feature mapping (Isomap) to establish a three-dimensional perceptual texture space which better explains the features used by humans in texture similarity judgment. Finally, we proposed computational models to map perceptual features to the perceptual texture space, which can suggest a procedural model to produce textures according to user-defined perceptual scales.

[1]  Jana Reinhard,et al.  Textures A Photographic Album For Artists And Designers , 2016 .

[2]  Jian Yang,et al.  A General Exponential Framework for Dimensionality Reduction , 2014, IEEE Transactions on Image Processing.

[3]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[4]  P PentlandAlex Fractal-Based Description of Natural Scenes , 1984 .

[5]  M. Chantler The effect of variation in illuminant direction on texture classification , 1994 .

[6]  S. Wolfram,et al.  Two-dimensional cellular automata , 1985 .

[7]  Mike J. Chantler,et al.  Identifying perceptual features of procedural textures , 2013 .

[8]  J.R. Bellegarda,et al.  Exploiting latent semantic information in statistical language modeling , 2000, Proceedings of the IEEE.

[9]  John P. Lewis,et al.  Generalized stochastic subdivision , 1987, TOGS.

[10]  Matthias Riebisch,et al.  A Traceability Link Model for the Unified Process , 2007 .

[11]  Hans Køhling Pedersen,et al.  Decorating implicit surfaces , 1995, SIGGRAPH.

[12]  David S. Ebert,et al.  Texturing & modeling : a procedural approach : 日本語版 , 2009 .

[13]  Michael Weinmann,et al.  Material Classification Based on Training Data Synthesized Using a BTF Database , 2014, ECCV.

[14]  G. N. Srinivasan,et al.  Statistical Texture Analysis , 2008 .

[15]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[16]  Tony DeRose,et al.  Wavelet noise , 2005, SIGGRAPH 2005.

[17]  Khemraj Emrith,et al.  Perceptual dimensions for surface texture retrieval , 2008 .

[18]  Karl R Gegenfurtner,et al.  Color appearance of real objects varying in material, hue, and shape. , 2010, Journal of vision.

[19]  Karolin Baecker,et al.  Cellular Automata Modeling Of Physical Systems , 2016 .

[20]  Fraser Halley,et al.  Perceptually relevant browsing environments for large texture databases , 2012 .

[21]  M. Mattavelli,et al.  Introduction to the special issue on multimedia implementation », IEEE Trans. On Circuits and Systems for Video Technology , 2004 .

[22]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Lei Wang,et al.  Learning Texture Similarity with Perceptual Pairwise Distance , 2005 .

[24]  Noureddine Abbadeni,et al.  Computational Perceptual Features for Texture Representation and Retrieval , 2011, IEEE Transactions on Image Processing.

[25]  Eero P. Simoncelli,et al.  Texture modeling and synthesis using joint statistics of complex wavelet coefficients , 1999 .

[26]  Greg Turk,et al.  Texture synthesis on surfaces , 2001, SIGGRAPH.

[27]  Wee Kheng Leow,et al.  Perceptual Texture Space Improves Perceptual Consistency of Computational Features , 2001, IJCAI.

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[29]  Adam Finkelstein,et al.  Lapped textures , 2000, SIGGRAPH.

[30]  Robert W. Kentridge,et al.  Detectability of onsets versus offsets in the change detection paradigm. , 2003, Journal of vision.

[31]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[32]  Ares Lagae,et al.  A Survey of Procedural Noise Functions , 2010, Comput. Graph. Forum.

[33]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Craig S. Kaplan,et al.  Islamic star patterns in absolute geometry , 2004, TOGS.

[35]  Robert King,et al.  Textural features corresponding to textural properties , 1989, IEEE Trans. Syst. Man Cybern..

[36]  M D Harpen A computer simulation of wavelet noise reduction in computed tomography. , 1999, Medical physics.

[37]  Xiaolan Fu,et al.  Fusion Tensor Subspace Transformation Framework , 2013, PloS one.

[38]  John A. Pyles,et al.  Exploration of complex visual feature spaces for object perception , 2014, Front. Comput. Neurosci..

[39]  Patrick F. Reidy An Introduction to Latent Semantic Analysis , 2009 .

[40]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[41]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[42]  Yoichi Ando,et al.  Textural properties corresponding to visual perception based on the correlation mechanism in the visual system , 2003, Psychological research.

[43]  R. Goebel,et al.  Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation , 2013, Front. Psychol..

[44]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[45]  A. Ravishankar Rao,et al.  Towards a texture naming system: Identifying relevant dimensions of texture , 1993, Vision Research.

[46]  Craig S. Kaplan,et al.  Islamic star patterns from polygons in contact , 2005, Graphics Interface.

[47]  David J. Fleet,et al.  Texture space , 2001, Vision Research.

[48]  B Julesz,et al.  Experiments in the visual perception of texture. , 1975, Scientific American.

[49]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Steven Worley,et al.  A cellular texture basis function , 1996, SIGGRAPH.

[51]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[52]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[53]  Qasim Zaidi,et al.  The role of color in recognizing material changes , 2010, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[54]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[55]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[56]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[57]  Michael L. Mack,et al.  Identifying the Perceptual Dimensions of Visual Complexity of Scenes , 2004 .

[58]  S. Jadhav Image Fusion Based On Wavelet Transform , 2014 .

[59]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.

[60]  Roland W Fleming,et al.  Real-world illumination and the perception of surface reflectance properties. , 2003, Journal of vision.

[61]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[62]  Christiane B. Wiebel,et al.  Perceptual qualities and material classes. , 2013, Journal of vision.

[63]  M. Landy,et al.  Conjoint Measurement of Gloss and Surface Texture , 2008, Psychological science.

[64]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[65]  Carlo Baldassi,et al.  Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons , 2013, PLoS Comput. Biol..

[66]  Wee Kheng Leow,et al.  A hybrid model for invariant and perceptual texture mapping , 2002, Object recognition supported by user interaction for service robots.

[67]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[68]  E. Adelson,et al.  Image statistics and the perception of surface qualities , 2007, Nature.

[69]  Benjamin J. Balas,et al.  Texture synthesis and perception: Using computational models to study texture representations in the human visual system , 2006, Vision Research.

[70]  C. Heaps,et al.  Similarity and Features of Natural Textures , 1999 .

[71]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[72]  Ken Perlin,et al.  An image synthesizer , 1988 .

[73]  A. Rosenfeld,et al.  A Theory of Textural Segmentation , 1983 .