A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization

This paper presents an interactive graphical user interface (GUI) based multiobjective evolutionary algorithm (MOEA) toolbox for effective computer-aided multiobjective (MO) optimization. Without the need of aggregating multiple criteria into a compromise function, it incorporates the concept of Pareto's optimality to evolve a family of nondominated solutions distributing along the tradeoffs uniformly. The toolbox is also designed with many useful features such as the goal and priority settings to provide better support for decision-making in MO optimization, dynamic population size that is computed adaptively according to the online discovered Pareto-front, soft/hard goal settings for constraint handlings, multiple goals specification for logical "AND"/"OR" operation, adaptive niching scheme for uniform population distribution, and a useful convergence representation for MO optimization. The MOEA toolbox is freely available for download at http://vlab.ee.nus.edu.sg/-kctan/moea.htm which is ready for immediate use with minimal knowledge needed in evolutionary computing. To use the toolbox, the user merely needs to provide a simple "model" file that specifies the objective function corresponding to his/her particular optimization problem. Other aspects like decision variable settings, optimization process monitoring and graphical results analysis can be performed easily through the embedded GUIs in the toolbox. The effectiveness and applications of the toolbox are illustrated via the design optimization problem of a practical ill-conditioned distillation system. Performance of the algorithm in MOEA toolbox is also compared with other well-known evolutionary MO optimization methods upon a benchmark problem.

[1]  F. van Diggelen,et al.  A Hadamard weighted loop shaping design procedure , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[2]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[3]  Michael Pilegaard Hansen,et al.  Tabu Search for Multiobjective Optimization: MOTS , 1997 .

[4]  Andrzej Jaszkiewicz,et al.  Pareto Simulated Annealing , 1997 .

[5]  S. Rebeschiess MIRCOS - microcontroller-based real time control system toolbox for use with Matlab/Simulink , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[6]  Witold Pedrycz,et al.  Application of genetic algorithms for control design in power systems , 1998 .

[7]  Jin-Jang Leou,et al.  A genetic algorithm approach to Chinese handwriting normalization , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[9]  Xiaohong Guan,et al.  Adopting a Minimum Commitment Principle for Computer Aided Geometric Design Systems , 1996 .

[10]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[11]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[12]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[13]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Peter J. Fleming,et al.  On-line genetic auto-tuning of mixed H2/H∞ optimal magnetic bearing controllers , 1998 .

[15]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[16]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .

[17]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[18]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[19]  Tetsuo Morimoto,et al.  Optimal control of physiological processes of plants in a green plant factory , 1995 .

[20]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[21]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[22]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[23]  J. D. Perkins,et al.  On the design of robust two degree of freedom controllers , 1993, Autom..

[24]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[25]  Sigurd Skogestad,et al.  Robust control of ill-conditioned plants: high-purity distillation , 1988 .

[26]  DebKalyanmoy Multi-objective genetic algorithms , 1999 .

[27]  Kay Chen Tan,et al.  Nonlinear constraint handling technique via angular transformation , 2001 .

[28]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[29]  H. Adeli,et al.  Augmented Lagrangian genetic algorithm for structural optimization , 1994 .

[30]  Alan D. Christiansen,et al.  An empirical study of evolutionary techniques for multiobjective optimization in engineering design , 1996 .

[31]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[32]  Ian Postlethwaite,et al.  Robust control of a high purity distillation column using mu -K iteration , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[33]  Tong Heng Lee,et al.  Incrementing Multi-objective Evolutionary Algorithms: Performance Studies and Comparisons , 2001, EMO.

[34]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[35]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[36]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[37]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[38]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[39]  H. Hanselmann Automotive control: from concept to experiment to product , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[40]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[41]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[42]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[43]  Sigurd Skogestad,et al.  Two-degree-of-freedom controller design for an ill-conditioned distillation process using μ-synthesis , 1999, IEEE Trans. Control. Syst. Technol..

[44]  Paul D. Minton,et al.  Statistics: The Exploration and Analysis of Data , 2002, Technometrics.

[45]  A. Eiben,et al.  A multi-sexual genetic algorithm for multiobjective optimization , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[46]  Martina Gorges-Schleuter,et al.  Application of Genetic Algorithms to Task Planning and Learning , 1992, Parallel Problem Solving from Nature.

[47]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[48]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms with application to control engineering problems. , 1995 .

[49]  E. F. Khor,et al.  Evolutionary algorithms with goal and priority information for multi-objective optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[50]  Keith J. Burnham,et al.  On improving physical selectivity in the treatment of cancer: A systems modelling and optimisation approach , 1997 .

[51]  Hidenori Kimura,et al.  Controller design of an ill-conditioned plant using robust stability degree assignment , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[52]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..